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Foreword

This monograph is a reprint of our original book Positive Operators pub-
lished in 1985 as volume # 119 in the Pure and Applied Mathematics series
of Academic Press. With the exception of correcting several misprints and a
few mathematical errors, this edition of the book is identical to the original
one.

At the end of the book we have listed a collection of monographs that
were published after its 1985 publication that contain material and new
developments related to the subject matter of this book.

West Lafayette and Indianapolis CHARALAMBOS D. ALIPRANTIS
May, 2006 OWEN BURKINSHAW
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Historical Foreword

′Oλβιos óστιs ιστoρίηs έσχε µάθησιν .

Eυριπίδηs

Wise is the person who knows history.
Euripides

Positive operators made their debut at the beginning of the nineteenth century.
They were tied to integral operators (whose study triggered the birth of functional
analysis) and to matrices with nonnegative entries. However, positive operators
were investigated in a systematic manner much later. Their study followed closely
the development of Riesz spaces. An address of F. Riesz in 1928 On the decom-
position of linear functionals [166] (into their positive and negative parts), at the
International Congress of Mathematicians in Bologna, Italy, marked the beginnings
of the study of Riesz spaces and positive operators. The theory of Riesz spaces was
developed axiomatically in the mid-1930s by H. Freudenthal [67] and L. V. Kan-
torovich [85, 86, 87, 88, 89, 90, 91]. Positive operators were also introduced and
studied in the mid-1930s by L. V. Kantorovich, and they made their first textbook
appearance in the 1940 edition of G. Birkhoff’s book Lattice Theory [37]. Un-
doubtedly, the systematic study of positive operators was originated in the 1930s
by F. Riesz, L. V. Kantorovich and G. Birkhoff.

In the 1940s and early 1950s one finds very few papers on positive operators.
In this period, the main contributions came from the Soviet school (L. V. Kan-
torovich, M. G. Krein, A. G. Pinsker, M. A. Rutman, B. Z. Vulikh) and the Japanese
school (H. Nakano, K. Yosida, T. Ogasawara, and their students). In the 1950 the
book Functional Analysis in Partially Ordered Spaces [92] by L. V. Kantorovich,
B. Z. Vulikh, and A. G. Pinsker appeared in the Soviet literature. This book (that

xi



xii Historical Foreword

has not been translated into English) contained an excellent treatment, up to that
date, of positive operators and their applications.

Since the mid-1950s, research on positive operators has gained considerable mo-
mentum. From 1955 to 1970 important contributions came from T. Andô [20]–[24],
C. Goffman [70], S. Kaplan [93], S. Karlin [95], P. P. Korovkin [98], M. A. Kras-
noselskii, P. P. Zabreiko, E. I. Pustylnik, and P. E. Sobolevskii [100], U. Kren-
gel [105, 106], G. Ya. Lozanovsky [119]–[123], W. A. J. Luxemburg and A. C. Za-
anen [125, 130], H. Nakano [148]–[152], I. Namioka [153], A. Peressini [162],
H. H. Schaefer [171], and B. Z. Vulikh [189]. Thus, by the end of the 1960s the
“ground work” for the theory of positive operators was well established.

The 1970s can be characterized as the “maturity period” for the theory of
positive operators. In 1974, the first monograph devoted entirely to the subject
appeared in the literature. This was H. H. Schaefer’s book Banach Lattices and
Positive Operators [174], whose influence on the development of positive operators
was enormous. By this time, the number of mathematicians working in the field
had increased, and research was carried out in a more systematic manner. The
growth of the subject has been very fast; and, in addition, applications to other
disciplines have started to flourish. Another milestone for the 1970s was the break-
through paper of P. G. Dodds and D. H. Fremlin [54] on positive compact operators.
The list of contributors to the theory of positive operators in the 1970s includes
Y. A. Abramovich, C. D. Aliprantis, S. J. Bernau, A. V. Buhvalov, O. Burkin-
shaw, D. I. Cartwright, P. G. Dodds, M. Duhoux, P. van Eldik, J. J. Grobler,
D. H. Fremlin, H. P. Lotz, W. A. J. Luxemburg, M. Meyer, P. Meyer-Nieberg,
R. J. Nagel, U. Schlotterbeck, H. H. Schaefer, A. R. Schep, C. T. Tucker, A. I. Vek-
sler, A. W. Wickstead, M. Wolff, and A. C. Zaanen.

The 1980s have started very well for the theory of positive operators. A series
of important papers on the subject have been written by the authors [9, 10, 11,
12, 13, 14, 15, 16, 17]. Another excellent book on positive operators was added
to the literature of positive operators. This was A. C. Zaanen’s book Riesz Spaces
II [197] dealing primarily with research done up to 1980. In addition, a pool
of talented young mathematicians had joined the ranks of researchers of positive
operators; many have already made important contributions. Also, more and more
mathematicians of the theory of Banach spaces are studying positive operators, and
this was given an extra boost to the subject. In addition, the theory of positive
operators has found some impressive applications in a variety of disciplines, ranging
from mathematical physics to economics.

Thus, as we are progressing into the 1980s the future of positive operators looks
bright. The field is alive and grows both in theory and applications. It is our hope
that you, the reader, will also contribute towards this growth.

Indianapolis CHARALAMBOS D. ALIPRANTIS
May, 1984 OWEN BURKINSHAW



Preface

Linear operators have been studied in various contexts and settings in the
past. Their study is a subject of great importance both to mathematics
and to its applications. The present book deals mainly with the special
class of linear operators known as positive operators. A linear operator
between two ordered vector spaces that carries positive elements to posi-
tive elements is referred to as a positive operator. For instance, the linear
operator T : C[0, 1] → C[0, 1], defined by

Tf(x) =
∫ x

0
f(t) dt ,

carries positive functions of C[0, 1] to positive functions, and is thus an ex-
ample of a positive operator. The material covered in the book has some
overlap with the material in the books by H. H. Schaefer [174] and A. C. Zaa-
nen [197]. However, our attention is mostly focused on recent developments
of the subject and the overlap with the above-mentioned books is kept to
a minimum. On the other hand, we have intentionally covered those topics
where the ingredient of positivity allowed us to obtain beautiful and elegant
results.

It is well known that many linear operators between Banach spaces aris-
ing in classical analysis are in fact positive operators. For this reason, in this
book positive operators are studied in the setting of Riesz spaces and Banach
lattices. In order to make the book as self-sufficient as possible, some basic
results from the theory of Riesz spaces and Banach lattices are included with
proofs as needed. On the other hand, we assume that the reader is familiar
with the elementary concepts of real analysis and functional analysis.
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xiv Preface

The material has been spread out into five chapters. Chapter 1 deals
mainly with the elementary properties of positive operators. This chapter
covers extension properties of positive operators, order projections, order
continuous operators, and positive linear functionals. Chapter 2 studies
three basic classes of operators: the components of a positive operator,
the lattice homomorphisms, and the orthomorphisms. Chapter 3 consid-
ers topological aspects of vector spaces. It covers topological vector spaces,
weak topologies on Banach and Riesz spaces, and locally convex-solid Riesz
spaces. The fourth chapter is devoted to Banach lattices. Particular em-
phasis is given to Banach lattices with order continuous norms. Also, weak
compactness in Banach lattices, embeddings of Banach lattices, and Banach
lattices of operators are studied in this chapter. The fifth and final chapter
of the book deals with compactness properties of positive operators. This
is the most important (and most elegant) chapter of the book. It makes a
thorough study of compact, weakly compact, and Dunford–Pettis operators
on Banach lattices.

The five chapters consist of nineteen sections. Each section ends with ex-
ercises that supplement its material. There are almost 300 exercises. These
exercises extend and illustrate the material of the book in a concrete manner.

We have made every effort to be as accurate as possible in crediting the
major theorems of the book to their original discoverers.

CHARALAMBOS D. ALIPRANTIS
OWEN BURKINSHAW
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Chapter 1

A linear operator between two ordered vector spaces that carries positive el-
ements to positive elements is known in the literature as a positive operator.
As we have mentioned in the preface, the main theme of this book is the
study of positive operators. To obtain fruitful and useful results the domains
and the ranges of positive operators will be taken to be Riesz spaces (vector
lattices). For this reason, in order to make the material as self-sufficient as
possible, the fundamental properties of Riesz spaces are discussed as they
are needed.

Throughout this book the symbol R will denote the set of real numbers,
N will denote the set of natural numbers, Q will denote the set of rational
numbers, and Z will denote the set of integers.

1.1. Basic Properties of Positive Operators

A real vector space E is said to be an ordered vector space whenever it
is equipped with an order relation ≥ (i.e., ≥ is a reflexive, antisymmetric,
and transitive binary relation on E) that is compatible with the algebraic
structure of E in the sense that it satisfies the following two axioms:

(1) If x ≥ y, then x + z ≥ y + z holds for all z ∈ E.

(2) If x ≥ y, than αx ≥ αy holds for all α ≥ 0.

An alternative notation for x ≥ y is y ≤ x. A vector x in an ordered
vector space E is called positive whenever x ≥ 0 holds. The set of all

1
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2 1. The Order Structure of Positive Operators

positive vectors of E will be denoted by E+, i.e., E+ :=
{
x ∈ E : x ≥ 0

}
.

The set E+ of positive vectors is called the positive cone of E.

Definition 1.1. An operator is a linear map between two vector spaces.

That is, a mapping T : E → F between two vector spaces is called an
operator if and only if T (αx + βy) = αT (x) + βT (y) holds for all x, y ∈ E
and all α, β ∈ R. As usual, the value T (x) will also be designated by Tx.

Definition 1.2. An operator T : E → F between two ordered vector spaces
is said to be positive (in symbols T ≥ 0 or 0 ≤ T ) if T (x) ≥ 0 for all x ≥ 0.

Clearly, an operator T : E → F between two ordered vector spaces is
positive if and only if T (E+) ⊆ F+ (and also if and only if x ≤ y implies
Tx ≤ Ty).

A Riesz space (or a vector lattice) is an ordered vector space E with
the additional property that for each pair of vectors x, y ∈ E the supremum
and the infimum of the set {x, y} both exist in E. Following the classical
notation, we shall write

x ∨ y := sup{x, y} and x ∧ y := inf{x, y} .

Typical examples of Riesz spaces are provided by the function spaces.
A function space is a vector space E of real-valued functions on a set Ω
such that for each pair f, g ∈ E the functions

[f ∨ g](ω) := max
{
f(ω), g(ω)

}
and [f ∧ g](ω) := min

{
f(ω), g(ω)

}
both belong to E. Clearly, every function space E with the pointwise or-
dering (i.e., f ≤ g holds in E if and only if f(ω) ≤ g(ω) for all ω ∈ Ω) is a
Riesz space. Here are some important examples of function spaces:

(a) R
Ω, all real-valued functions defined on a set Ω.

(b) C(Ω), all continuous real-valued functions on a topological space Ω.
(c) Cb(Ω), all bounded real-valued continuous functions on a topolog-

ical space Ω.
(d) �∞(Ω), all bounded real-valued functions on a set Ω.
(e) �p (0 < p < ∞), all real sequences (x1, x2, . . .) with

∑∞
n=1|xn|p <∞.

The class of Lp-spaces is another important class of Riesz spaces. If
(X, Σ, µ) is a measure space and 0 < p < ∞, then Lp(µ) is the vector space
of all real-valued µ-measurable functions f on X such that

∫
X |f |p dµ < ∞.

Also, L∞(µ) is the vector space of all real-valued µ-measurable functions
f on X such that esssup |f | < ∞. As usual, functions differing on a set
of measure zero are treated as identical, i.e., f = g in Lp(µ) means that
f(x) = g(x) for µ-almost all x ∈ X. (In other words, each Lp(µ)-space
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consists of equivalence classes rather than functions.) It is easy to see that
under the ordering f ≤ g whenever f(x) ≤ g(x) holds for µ-almost all x ∈ X,
each Lp(µ) is a Riesz space.

There are several useful identities that are true in a Riesz space some of
which are included in the next few results.

Theorem 1.3. If x, y and z are elements in a Riesz space, then:

(1) x ∨ y = −
[
(−x) ∧ (−y)

]
and x ∧ y = −

[
(−x) ∨ (−y)

]
.

(2) x + y = x ∧ y + x ∨ y.
(3) x+(y∨ z) = (x+y)∨ (x+ z) and x+(y∧ z) = (x+y)∧ (x+ z).
(4) α(x∨y) = (αx)∨(αy) and α(x∧y) = (αx)∧(αy) for all α ≥ 0.

Proof. (1) From x ≤ x ∨ y and y ≤ x ∨ y we get −(x ∨ y) ≤ −x and
−(x ∨ y) ≤ −y, and so −(x ∨ y) ≤ (−x) ∧ (−y). On the other hand, if
−x ≥ z and −y ≥ z, then −z ≥ x and −z ≥ y, and hence −z ≥ x∨y. Thus,
−(x ∨ y) ≥ z holds and this shows that −(x ∨ y) is the infimum of the set
{−x,−y}. That is, (−x) ∧ (−y) = −(x ∨ y). To get the identity for x ∧ y
replace x by −x and y by −y in the above proven identity.

(2) From x∧ y ≤ y it follows that y−x∧ y ≥ 0 and so x ≤ x+ y−x∧ y.
Similarly, y ≤ x + y − x ∧ y. Consequently, we have x ∨ y ≤ x + y − x ∧ y
or x ∧ y + x ∨ y ≤ x + y. On the other hand, from y ≤ x ∨ y we see that
x+y−x∨y ≤ x, and similarly x+y−x∨y ≤ y. Thus, x+y−x∨y ≤ x∧y
so that x + y ≤ x ∧ y + x ∨ y, and the desired identity follows.

(3) Clearly, x + y ≤ x + y ∨ z and x + z ≤ x + y ∨ z, and therefore
(x+y)∨ (x+z) ≤ x+y∨z. On the other hand, we have y = −x+(x+y) ≤
−x + (x + y) ∨ (x + z), and likewise z ≤ −x + (x + y) ∨ (x + z), and so
y ∨ z ≤ −x + (x + y) ∨ (x + z). Therefore, x + y ∨ z ≤ (x + y) ∨ (x + z)
also holds, and thus x + y ∨ z = (x + y)∨ (x + z). The other identity can be
proven in a similar manner.

(4) Fix α > 0. Clearly, (αx) ∨ (αy) ≤ α(x ∨ y). If αx ≤ z and αy ≤ z
are both true, then x ≤ 1

αz and y ≤ 1
αz also are true, and so x ∨ y ≤ 1

αz.
This implies α(x ∨ y) ≤ z, and this shows that α(x ∨ y) is the supremum of
the set {αx, αy}. Therefore, (αx)∨ (αy) = α(x∨ y). The other identity can
be proven similarly.

The reader can establish in a similar manner the following general ver-
sions of the preceding formulas in (1), (3), and (4). If A is a nonempty
subset of a Riesz space for which sup A exists, then:

(a) The infimum of the set −A := {−a : a ∈ A} exists and

inf(−A) = − sup A .
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(b) For each vector x the supremum of the set x+A := {x+a : a ∈ A}
exists and

sup(x + A) = x + supA .

(c) For each α ≥ 0 the supremum of the set αA := {αa : a ∈ A} exists
and

sup(αA) = α sup A .

We have also the following useful inequality between positive vectors.

Lemma 1.4. If x, x1, x2, . . . , xn are positive elements in a Riesz space, then

x ∧ (x1 + x2 + · · · + xn) ≤ x ∧ x1 + x ∧ x2 + · · · + x ∧ xn .

Proof. Assume that x and x1, x2 are all positive vectors. For simplicity, let
y = x ∧ (x1 + x2). Then y ≤ x1 + x2 and so y − x1 ≤ x2. Also we have
y−x1 ≤ y ≤ x. Consequently y−x1 ≤ x∧x2. This implies y−x∧x2 ≤ x1 and
since y−x∧x2 ≤ y ≤ x, we infer that y−x∧x2 ≤ x∧x1 or y ≤ x∧x1+x∧x2.
The proof now can be completed by induction.

For any vector x in a Riesz space define

x+ := x ∨ 0 , x− := (−x) ∨ 0 , and |x| := x ∨ (−x) .

The element x+ is called the positive part, x− is called the negative
part, and |x| is called the absolute value of x. The vectors x+, x−, and
|x| satisfy the following important identities.

Theorem 1.5. If x is an arbitrary vector in a Riesz space E, then:

(1) x = x+ − x−.

(2) |x| = x+ + x−.

(3) x+ ∧ x− = 0.

Moreover, the decomposition in (1) satisfies the following minimality and
uniqueness properties.

(a) If x = y − z with y, z ∈ E+, then y ≥ x+ and z ≥ x−.

(b) If x = y − z with y ∧ z = 0, then y = x+ and z = x−.

Proof. (1) From Theorem 1.3 we see that

x = x + 0 = x ∨ 0 + x ∧ 0 = x ∨ 0 − (−x) ∨ 0 = x+ − x− .

(2) Using Theorem 1.3 and (1), we get

|x| = x ∨ (−x) = (2x) ∨ 0 − x = 2(x ∨ 0) − x

= 2x+ − x = 2x+ − (x+ − x−) = x+ + x− .
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(3) Note that

x+ ∧ x− = (x+ − x−) ∧ 0 + x− = x ∧ 0 + x−

= −[(−x) ∨ 0] + x− = −x− + x− = 0 .

(a) Assume that x = y − z with y ≥ 0 and z ≥ 0. From x = x+ − x−,
we get x+ = x− + y − z ≤ x− + y, and so from Lemma 1.4 we get

x+ = x+ ∧ x+ ≤ x+ ∧ (x− + y) ≤ x+ ∧ x− + x+ ∧ y = x+ ∧ y ≤ y .

Similarly, x− ≤ z.

(b) Let x = y − z with y ∧ z = 0. Then, using Theorem 1.3, we see that
x+ = (y− z)∨ 0 = y ∨ z − z = (y + z − y ∧ z)− z = y. Similarly, x− = z.

We also have the following useful inequality regarding positive operators.

Lemma 1.6. If T : E → F is a positive operator between two Riesz spaces,
then for each x ∈ E we have

|Tx| ≤ T |x| .

Proof. If x ∈ E, then ±x ≤ |x| and the positivity of T yields ±Tx ≤ T |x|,
which is equivalent to |Tx| ≤ T |x|.

A few more useful lattice identities are included in the next result.

Theorem 1.7. If x and y are elements in a Riesz space, then we have:

(1) x = (x − y)+ + x ∧ y.

(2) x ∨ y = 1
2

(
x + y + |x − y|

)
and x ∧ y = 1

2

(
x + y − |x − y|

)
.

(3) |x − y| = x ∨ y − x ∧ y.

(4) |x| ∨ |y| = 1
2

(
|x + y| + |x − y|

)
.

(5) |x| ∧ |y| = 1
2

∣∣|x + y| − |x − y|
∣∣.

(6) |x + y| ∧ |x − y| =
∣∣|x| − |y|

∣∣.
(7) |x + y| ∨ |x − y| = |x| + |y|.

Proof. (1) Using Theorem 1.3 we see that

x = x ∨ y − y + x ∧ y = (x − y) ∨ (y − y) + x ∧ y

= (x − y) ∨ 0 + x ∧ y = (x − y)+ + x ∧ y .

(2) For the first identity note that

x + y + |x − y| = x + y + (x − y) ∨ (y − x)

=
[
(x + y) + (x − y)

]
∨
[
(x + y) + (y − x)

]
= (2x) ∨ (2y) = 2(x ∨ y) .
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(3) Subtract the two identities in (2).

(4) Using (2) above, we see that

|x + y| + |x − y| = (x + y) ∨ (−x − y) + |x − y|
=
(
x + y + |x − y|

)
∨
(
−x − y + |x − y|

)
= 2
(
[x ∨ y] ∨ [(−x) ∨ (−y)]

)
= 2
(
[x ∨ (−x)] ∨ [y ∨ (−y)]

)
= 2
(
|x| ∨ |y|

)
.

(5) Using (2) and (4) above we get
∣∣|x + y| − |x − y|

∣∣ = 2
(
|x + y| ∨ |x − y|

)
−
(
|x + y| + |x − y|

)
= 2
(
|x| + |y|

)
− 2
(
|x| ∨ |y|

)
= 2
(
|x| ∧ |y|

)
.

(6) Notice that

|x + y| ∧ |x − y|
=
[
(x + y) ∨ (−x − y)

]
∧
[
(x − y) ∨ (y − x)

]
=
{[

(x + y) ∨ (−x − y)
]
∧ (x − y)

}
∨
{[

(x + y) ∨ (−x − y)
]
∧ (y − x)

}
=
[
(x+ y) ∧ (x− y)

]
∨
[
(−x− y) ∧ (x− y)

]
∨ · · ·

· · · ∨
[
(x+ y) ∧ (y−x)

]
∨
[
(−x− y) ∧ (y−x)

]
=
[
x+ y ∧ (− y)

]
∨
[
− y + (−x) ∧ x

]
∨ · · ·

· · · ∨
[
y +x ∧ (−x)

]
∨
[
−x+ (− y) ∧ y

]
=
{[

x + y ∧ (−y)
]
∨
[
−x + y ∧ (−y)

]}
∨ · · ·

· · · ∨
{[

−y + (−x) ∧ x
]
∨
[
y + x ∧ (−x)

]}

=
[
x ∨ (−x) + y ∧ (−y)

]
∨
[
(−y) ∨ y + x ∧ (−x)

]
=
[
|x| − |y|

]
∨
[
|y| − |x|

]
=
∣∣|x| − |y|

∣∣ .

(7) Using (3) and (5) we get

|x + y| ∨ |x − y| =
∣∣|x + y| − |x − y|

∣∣+ |x + y| ∧ |x − y|
= 2
(
|x| ∧ |y|

)
+
∣∣|x| − |y|

∣∣
= 2
(
|x| ∧ |y|

)
+
(
|x| ∨ |y| − |x| ∧ |y|

)
= |x| ∧ |y| + |x| ∨ |y| = |x| + |y| ,

and the proof is finished.
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It should be noted that the identities in (2) above show that an ordered
vector space is a Riesz space if and only if the absolute value |x| = x∨ (−x)
exists for each vector x.

In a Riesz space, two elements x and y are said to be disjoint (in
symbols x ⊥ y) whenever |x|∧|y| = 0 holds. Note that according to part (5)
of Theorem 1.7 we have x ⊥ y if and only if |x+y| = |x−y|. Two subsets A
and B of a Riesz space are called disjoint (denoted A ⊥ B) if a ⊥ b holds
for all a ∈ A and all b ∈ B.

If A is a nonempty subset of a Riesz space E, then its disjoint com-
plement Ad is defined by

Ad :=
{
x ∈ E : x ⊥ y for all y ∈ A

}
.

We write Add for (Ad)d. Note that A ∩ Ad = {0}.
If A and B are subsets of a Riesz space, then we shall employ in this

book the following self-explanatory notation:

|A| :=
{
|a| : a ∈ A

}
A+ :=

{
a+ : a ∈ A

}
A− :=

{
a− : a ∈ A

}
A ∨ B :=

{
a ∨ b : a ∈ A and b ∈ B

}
A ∧ B :=

{
a ∧ b : a ∈ A and b ∈ B

}
x ∨ A :=

{
x ∨ a : a ∈ A

}
x ∧ A :=

{
x ∧ a : a ∈ A

}

The next theorem tells us that every Riesz space satisfies the infinite
distributive law.

Theorem 1.8 (The Infinite Distributive Law). Let A be a nonempty subset
of a Riesz space. If sup A exists, then for each vector x the supremum of
the set x ∧ A exists and

sup(x ∧ A) = x ∧ sup A .

Similarly, if inf A exists, then inf(x ∨ A) exists for each vector x and

inf(x ∨ A) = x ∨ inf A .

Proof. Assume that sup A exists. Let y = sup A and fix some vector x.
Clearly, for each a ∈ A we have x ∧ a ≤ x ∧ y, i.e., x ∧ y is an upper bound
of the set x ∧ A. To see that x ∧ y is the least upper bound of the set
x ∧A, assume that some vector z satisfies x ∧ a ≤ z for all a ∈ A. Since for
each a ∈ A we have a = x ∧ a + x ∨ a − x ≤ z + x ∨ y − x, it follows that
y ≤ z + x ∨ y − x. This implies x ∧ y = x + y − x ∨ y ≤ z, and from this we
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see that sup(x∧A) exists and that sup(x∧A) = x∧ sup A holds. The other
formula can be proven in a similar manner.

The next result includes most of the major inequalities that are used
extensively in estimations.

Theorem 1.9. For arbitrary elements x, y, and z in a Riesz space we have
the following inequalities.

(1)
∣∣|x| − |y|

∣∣ ≤ |x + y| ≤ |x| + |y| (the triangle inequality).

(2) |x ∨ z − y ∨ z| ≤ |x − y| and |x ∧ z − y ∧ z| ≤ |x − y| (Birkhoff’s
inequalities).

Proof. (1) Clearly, x+y ≤ |x|+ |y| and −x−y ≤ |x|+ |y| both hold. Thus,
|x + y| = (x + y) ∨ (−x − y) ≤ |x| + |y|.

Now observe that the inequality |x| =
∣∣(x+y)−y

∣∣ ≤ |x+y|+ |y| implies
|x|− |y| ≤ |x+y|. Similarly, |y|− |x| ≤ |x+y|, and hence

∣∣|x|− |y|
∣∣ ≤ |x+y|

is also true.

(2) Note that

x ∨ z − y ∨ z =
[
(x − z) ∨ 0 + z

]
−
[
(y − z) ∨ 0 + z

]
= (x − z)+ − (y − z)+

=
[
(x − y) + (y − z)

]+ − (y − z)+

≤
[
(x − y)+ + (y − z)+

]
− (y − z)+

= (x − y)+ ≤ |x − y| .

Similarly, y ∨ z − x∨ z ≤ |x− y|, and so |x∨ z − y ∨ z| ≤ |x− y|. The other
inequality can be proven in a similar manner.

In particular, note that in any Riesz space we have
∣∣x+ − y+

∣∣ ≤ |x − y| and
∣∣x− − y−

∣∣ ≤ |x − y| .

These inequalities will be employed quite often in our discussions.
A net {xα} in a Riesz space is said to be decreasing (in symbols xα ↓)

whenever α � β implies xα ≤ xβ. The notation xα ↓ x means that xα ↓ and
inf{xα} = x both hold. The meanings of xα ↑ and xα ↑ x are analogous.

The Archimedean property states that for each real number x > 0 the
sequence {nx} is unbounded above in R. This is, of course, equivalent to
saying that 1

nx ↓ 0 holds in R for each x > 0. Motivated by this property,
a Riesz space (and in general an ordered vector space) E is called Archi-
medean whenever 1

nx ↓ 0 holds in E for each x ∈ E+. All classical spaces
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of functional analysis (notably the function spaces and Lp-spaces) are Ar-
chimedean. For this reason, the focus of our work will be on the study of
positive operators between Archimedean Riesz spaces. Accordingly:

• Unless otherwise stated, throughout this book all Riesz spaces will
be assumed to be Archimedean.

The starting point in the theory of positive operators is a fundamental
extension theorem of L. V. Kantorovich [91]. The importance of the result
lies in the fact that in order for a mapping T : E+ → F+ to be the restriction
of a (unique) positive operator from E to F it is necessary and sufficient to
be additive on E+. The details follow.

Theorem 1.10 (Kantorovich). Suppose that E and F are two Riesz spaces
with F Archimedean. Assume also that T : E+ → F+ is an additive map-
ping, that is, T (x + y) = T (x) + T (y) holds for all x, y ∈ E+. Then T
has a unique extension to a positive operator from E to F . Moreover, the
extension (denoted by T again) is given by

T (x) = T (x+) − T (x−)

for all x ∈ E.

Proof. Let T : E+ → F+ be an additive mapping. Consider the mapping
S : E → F defined by

S(x) = T (x+) − T (x−) .

Clearly, S(x) = T (x) for each x ∈ E+. So, the mapping S extends T to
all of E. Since x = x+ − x− for each x ∈ E, it follows that S is the only
possible linear extension of T to all of E. Therefore, in order to complete
the proof, we must show that S is linear. That is, we must prove that S is
additive and homogeneous.

For the additivity of S start by observing that if any vector x ∈ E
can be written as a difference of two positive vectors, say x = x1 − x2

with x1, x2 ∈ E+, then S(x) = T (x1) − T (x2) holds. To see this, fix any
x ∈ E and assume that x = x+ − x− = x1 − x2, where x1, x2 ∈ E+. Then
x+ + x2 = x1 + x−, and so the additivity of T on E+ yields

T (x+) + T (x2) = T (x+ + x2) = T (x1 + x−) = T (x1) + T (x−)
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or S(x) = T (x+) − T (x−) = T (x1) − T (x2). From this property, we can
easily establish that S is additive. Indeed, if x, y ∈ E, then note that

S(x + y) = S
(
x+ + y+ − (x− + y−)

)
= T (x+ + y+) − T (x− + y−)

= T (x+) + T (y+) − T (x−) − T (y−)

=
[
T (x+) − T (x−)

]
+
[
T (y+) − T (y−)

]
= S(x) + S(y) .

In particular, the additivity of S implies that S(rx) = rS(x) holds for all
x ∈ E and all rational numbers r.

It remains to show that S is homogeneous. For this, we need to prove
first that S is monotone. That is, x ≥ y in E implies S(x) ≥ S(y) in F .
Indeed, if x ≥ y, then x − y ∈ E+, and so by the additivity of S we get

S(x) = S
(
(x − y) + y

)
= S(x − y) + S(y) = T (x − y) + S(y) ≥ S(y) .

Now fix x ∈ E+ and let λ ≥ 0. Pick two sequences of non-negative rational
numbers {rn} and {tn} such that rn ↑ λ and tn ↓ λ. The inequalities
rnx ≤ λx ≤ tnx and the monotonicity of S imply

rnS(x) = S(rnx) ≤ S(λx) ≤ S(tnx) = tnS(x)

for each n. Using that F is Archimedean, we easily get λS(x) = S(λx).
Finally, if λ ∈ R and x ∈ E, then

S(λx) = S(λx+ + (−λ)x−) = S
(
λx+
)

+ S
(
(−λ)x−)

= λS(x+) − λS(x−) = λ
[
T (x+) − T (x−)

]
= λS(x) .

So, S is also homogeneous, and the proof is finished.

The preceding lemma is not true if F is not Archimedean.

Example 1.11. Let φ : R → R be an additive function that is not linear, i.e.,
not of the form φ(x) = cx, and let F be the lexicographic plane. Consider
the mapping T : R

+ → F+ defined by T (x) =
(
x, φ(x)

)
for each x in R

+.
Note that T is additive and that if T could be extended to an operator from
R to F , then φ should be linear.

Thus, a mapping T : E+ → F+ extends to a (unique) positive operator
from E to F if and only if T is additive on E+. In other words, a positive
operator is determined completely by its action on the positive cone of its
domain. In the sequel, the expression “the mapping T : E+ → F+ defines
a positive operator” will simply mean that T is additive on E+ (and hence
extendable by Theorem 1.10 to a unique positive operator).

The (real) vector space of all operators from E to F will be denoted by
L(E, F ). It is not difficult to see that L(E, F ) under the ordering T ≥ S
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whenever T −S is a positive operator (i.e., whenever T (x) ≥ S(x) holds for
all x ∈ E+) is an ordered vector space.

Definition 1.12. For an operator T : E → F between two Riesz spaces
we shall say that its modulus |T | exists (or that T possesses a modulus)
whenever

|T | := T ∨ (−T )
exists—in the sense that |T | is the supremum of the set {−T, T} in L(E, F ).

In order to study the elementary properties of the modulus, we need a
decomposition property of Riesz spaces.

Theorem 1.13 (The Decomposition Property). If |x| ≤ |y1+· · ·+yn| holds
in a Riesz space, then there exist x1, . . . , xn satisfying x = x1 + · · ·+xn and
|xi| ≤ |yi| for each i = 1, . . . , n. Moreover, if x is positive, then the xi also
can be chosen to be positive.

Proof. By using induction it is enough to establish the result when n = 2.
So, let |x| ≤ |y1 + y2|.

Put x1 =
[
x ∨ (−|y1|)

]
∧ |y1|, and observe that |x1| ≤ |y1| (and that

0 ≤ x1 ≤ x holds if x is positive). Now put x2 = x − x1 and observe that

x2 = x −
[
x ∨ (−|y1|)

]
∧ |y1| =

[
0 ∧ (x + |y1|)

]
∨ (x − |y1|) .

On the other hand, |x| ≤ |y1|+ |y2| implies −|y1|− |y2| ≤ x ≤ |y1|+ |y2|,
from which it follows that

−|y2| = (−|y2|) ∧ 0 ≤
(
x + |y1|

)
∧ 0 ≤ x2 ≤ 0 ∨

(
x − |y1|

)
≤ |y2| .

Thus, |x2| ≤ |y2| also holds, and the proof is finished.

An important case for the modulus to exist is described next.

Theorem 1.14. Let T : E → F be an operator between two Riesz spaces
such that sup

{
|Ty| : |y| ≤ x

}
exists in F for each x ∈ E+. Then the

modulus of T exists and

|T |(x) = sup
{
|Ty| : |y| ≤ x

}
holds for all x ∈ E+.

Proof. Define S : E+ → F+ by S(x) = sup
{
|Ty| : |y| ≤ x

}
for each x in

E+. Since |y| ≤ x implies | ± y| = |y| ≤ x, it easily follows that we have
S(x) = sup

{
Ty : |y| ≤ x

}
for each x ∈ E+. We claim that S is additive.

To see this, let u, v ∈ E+. If |y| ≤ u and |z| ≤ v, then |y + z| ≤
|y| + |z| ≤ u + v, and so it follows from T (y) + T (z) = T (y + z) ≤ S(u + v)
that S(u) + S(v) ≤ S(u + v). On the other hand, if |y| ≤ u + v, then by
Theorem 1.13 there exist y1 and y2 with |y1| ≤ u, |y2| ≤ v, and y = y1 + y2.
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Then T (y) = T (y1) + T (y2) ≤ S(u) + S(v) holds, from which it follows that
S(u + v) ≤ S(u) + S(v). Therefore, S(u + v) = S(u) + S(v) holds. By
Theorem 1.10 the mapping S defines a positive operator from E to F .

To see that S is the supremum of {−T, T}, note first that T ≤ S
and −T ≤ S hold trivially in L(E, F ). Now assume that ±T ≤ R in
L(E, F ). Clearly, R is a positive operator. Fix x ∈ E+. If |y| ≤ x, then
note that

Ty = Ty+ − Ty− ≤ Ry+ + Ry− = R|y| ≤ Rx .

Therefore, S(x) ≤ R(x) holds for each x ∈ E+, and so S = T ∨ (−T ) holds
in L(E, F ).

It is easy to check, but important to observe, that if the modulus of an
operator T : E → F exists, then∣∣T (x)

∣∣ ≤ |T |
(
|x|
)

holds for all x ∈ E.
If x and y are two vectors in a Riesz space E with x ≤ y, then the order

interval [x, y] is the subset of E defined by

[x, y] :=
{
z ∈ E : x ≤ z ≤ y

}
.

A subset A of a Riesz space is said to be bounded above whenever there
exists some x satisfying y ≤ x for all y ∈ A. Similarly, a set A of a Riesz
space is bounded below whenever there exists some x satisfying y ≥ x for
all y ∈ A. Finally, a subset in a Riesz space is called order bounded if
it is bounded both above and below (or, equivalently, if it is included in an
order interval).

Besides L(E, F ), a number of other important vector subspaces of
L(E, F ) will be considered. The vector subspace Lb(E, F ) of all order
bounded operators from E to F will be of fundamental importance.

Definition 1.15. An operator T : E → F between two Riesz spaces is said
to be order bounded if it maps order bounded subsets of E to order bounded
subsets of F .

The vector space of all order bounded operators from E to F will be
denoted Lb(E, F ).

An operator T : E → F between two Riesz spaces is said to be regular
if it can be written as a difference of two positive operators. Of course,
this is equivalent to saying that there exists a positive operator S : E → F
satisfying T ≤ S.

Every positive operator is order bounded. Therefore, every regular oper-
ator is likewise order bounded. Thus, if Lr(E, F ) denotes the vector space of
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all regular operators (which is the same as the vector subspace generated by
the positive operators), then the following vector subspace inclusions hold:

Lr(E, F ) ⊆ Lb(E, F ) ⊆ L(E, F ) .

Of course, Lr(E, F ) and Lb(E, F ) with the ordering inherited from L(E, F )
are both ordered vector spaces. For brevity L(E, E), Lb(E, E), and Lr(E, E)
will be denoted by L(E), Lb(E) and Lr(E), respectively.

The inclusion Lr(E, F ) ⊆ Lb(E, F ) can be proper, as the next example
of H. P. Lotz (oral communication) shows.

Example 1.16 (Lotz). Consider the operator T : C[−1, 1] → C[−1, 1] de-
fined for each f ∈ C[−1, 1] by

Tf(t) = f
(
sin 1

t

)
− f
(
sin
(
t + 1

t

))
if 0 < |t| ≤ 1 and Tf(0) = 0. Note that the uniform continuity of f , coupled
with the inequality

∣∣sin(1
t ) − sin(t + 1

t )
∣∣ ≤ |t|, shows that Tf is indeed

continuous at zero, and so indeed Tf ∈ C[−1, 1] for each f ∈ C[−1, 1].
Next, observe that T [−1,1] ⊆ 2[−1,1] holds, where 1 denotes the con-

stant function one on [−1, 1]. Since for every f ∈ C[−1, 1] there exists some
λ > 0 with |f | ≤ λ1, it easily follows that T is an order bounded operator.

However, we claim that T is not a regular operator. To see this, assume
by way of contradiction that some positive operator S : C[−1, 1] → C[−1, 1]
satisfies T ≤ S. We claim that for each 0 ≤ f ∈ C[−1, 1] we have

[Sf ](0) ≥ f(t) for all t ∈ [−1, 1] . (�)

To establish this, fix 0 < f ∈ C[−1, 1], and let 0 < c < 2π. Also, for each
n ∈ N let tn = 1

c+2nπ and note that tn → 0. Next pick some gn ∈ C[−1, 1]
with 0 ≤ gn ≤ f such that gn(sin c) = f(sin c) and gn

(
sin(c + tn)

)
= 0.

Therefore,
[Sf ](tn) ≥ [Sgn](tn) ≥ [Tgn](tn) = f(sin c)

for all n, and so [Sf ](0) ≥ f(sin c) for all 0 < c < 2π, i.e., [Sf ](0) ≥ f(t) for
all t ∈ [−1, 1].

Now for each n, let Pn = {a0, a1, . . . , an} be a partition of [−1, 1] into
n subintervals. For each 1 ≤ i ≤ n pick some fi ∈ C[−1, 1] such that
0 ≤ fi ≤ 1, fi is zero outside the interval (ai−1, ai) and fi

(ai−1+ai

2

)
= 1.

Taking into account that
∑n

i=1 fi ≤ 1, it follows from (�) that

[S1](0) ≥
[
S
( n∑

i=1

fi

)]
(0) =

n∑
i=1

[Sfi](0) ≥ n

holds for each n, which is impossible. Thus, T is not a regular operator.
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Not every regular operator has a modulus. The next example of S. Ka-
plan [94] clarifies the situation.

Example 1.17 (Kaplan). Let c be the Riesz space of all convergent (real)
sequences, i.e., c =

{
(x1, x2, . . .) : limxn exists in R

}
. Consider the two

positive operators S, T : c → c defined by

S(x1, x2, . . .) =
(
x2, x1, x4, x3, x6, x5, . . .

)
and

T (x1, x2, . . .) =
(
x1, x1, x3, x3, x5, x5, . . .

)
.

We claim the modulus of the regular operator R = S − T does not exist.
To this end, assume by way of contradiction that the modulus |R| exists.

Let Pn : c → c be the positive operator defined by

Pn(x1, . . . , xn−1, xn, xn+1, . . .) = (x1, . . . , xn−1, 0, xn+1, . . .) .

Then ±R ≤ |R|P2n ≤ |R| holds, and so |R|P2n = |R| holds for each n. This
means that the image under |R| of every element of c has its even components
zero. On the other hand, if en is the sequence whose nth component is one
and every other zero and e = (1, 1, 1, . . .), then it follows from the inequalities

−R(en) ≤ |R|en ≤ |R|e
that the odd components of |R|e are greater than or equal to one, and hence
|R|e /∈ c. Therefore, |R| does not exist, as claimed.

A Riesz space is called Dedekind complete whenever every nonempty
bounded above subset has a supremum (or, equivalently, whenever every
nonempty bounded below subset has an infimum). A Riesz space E is De-
dekind complete if and only if 0 ≤ xα ↑≤ x implies the existence of sup{xα}.
Similarly, a Riesz space is said to be Dedekind σ-complete if every count-
able subset that is bounded above has a supremum (or, equivalently, when-
ever 0 ≤ xn ↑≤ x implies the existence of sup{xn}. The Lp-spaces are
examples of Dedekind complete Riesz spaces.

When F is Dedekind complete, the ordered vector space Lb(E, F ) has
the structure of a Riesz space. This important result was established first by
F. Riesz [166] for the special case F = R, and later L. V. Kantorovich [90,
91] extended it to the general setting.

Theorem 1.18 (F. Riesz–Kantorovich). If E and F are Riesz spaces with
F Dedekind complete, then the ordered vector space Lb(E, F ) is a Dedekind
complete Riesz space. Its lattice operations satisfy

|T |(x) = sup
{
|Ty| : |y| ≤ x

}
,

[S ∨ T ](x) = sup
{
S(y) + T (z) : y, z ∈ E+ and y + z = x

}
, and

[S ∧ T ](x) = inf
{
S(y) + T (z) : y, z ∈ E+ and y + z = x

}
for all S, T ∈ Lb(E, F ) and x ∈ E+.
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In addition, Tα ↓ 0 in Lb(E, F ) if and only if Tα(x) ↓ 0 in F for each
x ∈ E+.

Proof. Fix T ∈ Lb(E, F ). Since T is order bounded,

sup
{
|Ty| : |y| ≤ x

}
= sup

{
Ty : |y| ≤ x

}
= sup T [−x, x]

exists in F for each x ∈ E+, and so by Theorem 1.14 the modulus of T
exists, and moreover

|T |(x) = sup
{
Ty : |y| ≤ x

}
.

From Theorem 1.7 we see that Lb(E, F ) is a Riesz space.
Now let S, T ∈ Lb(E, F ) and x ∈ E+. By observing that y, z ∈ E+

satisfy y + z = x if and only if there exists some |u| ≤ x with y = 1
2(x + u)

and z = 1
2(x − u), it follows from Theorem 1.7 that

[S ∨ T ](x) = 1
2

(
Sx + Tx + |S − T |x)

= 1
2

(
Sx + Tx + sup{(S − T )u : |u| ≤ x}

)
= 1

2 sup
{
Sx + Su + Tx − Tu : |u| ≤ x

}
= sup

{
S
(

1
2(x + u)

)
+ T
(

1
2(x − u)

)
: |u| ≤ x

}
= sup

{
S(y) + T (z) : y, z ∈ E+ and y + z = x

}
.

The formula for S ∧ T can be proven in a similar manner.
Finally, we establish that Lb(E, F ) is Dedekind complete. To this end,

assume that 0 ≤ Tα ↑≤ T holds in Lb(E, F ). For each x ∈ E+ let S(x) =
sup{Tα(x)} and note that Tα(x) ↑ S(x). From Tα(x+y) = Tα(x)+Tα(y), it
follows (by taking order limits) that the mapping S : E+ → F+ is additive,
and so S defines a positive operator from E to F . Clearly, Tα ↑ S holds in
Lb(E, F ), proving that Lb(E, F ) is a Dedekind complete Riesz space.

From the preceding discussion it follows that when E and F are Riesz
spaces with F Dedekind complete, then each order bounded operator
T : E → F satisfies

T+(x) = sup
{
Ty : 0 ≤ y ≤ x

}
, and

T−(x) = sup
{
−Ty : 0 ≤ y ≤ x

}
for each x ∈ E+. From T = T+ − T−, it follows that Lb(E, F ) coincides
with the vector subspace generated by the positive operators in L(E, F ). In
other words, when F is Dedekind complete we have Lr(E, F ) = Lb(E, F ).

Recall that a subset D of a Riesz space is said to be directed upward
(in symbols D ↑) whenever for each pair x, y ∈ D there exists some z ∈ D
with x ≤ z and y ≤ z. The symbol D ↑ x means that D is directed upward
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and x = sup D holds. The meanings of D↓ and D ↓ x are analogous. Also,
the symbol D ≤ x means that y ≤ x holds for all y ∈ D.

The existence of the supremum of an upward directed subset of Lb(E, F )
is characterized as follows.

Theorem 1.19. Let E and F be two Riesz spaces with F Dedekind complete,
and let D be a nonempty subset of Lb(E, F ) satisfying D ↑ . Then sup D
exists in Lb(E, F ) if and only if the set {T (x) : T ∈ D} is bounded above
in F for each x ∈ E+. In this case,

[supD](x) = sup
{
T (x) : T ∈ D

}
holds for all x ∈ E+.

Proof. the “only if” part is trivial. The “if” part needs proof. So, assume
that D ↑ holds in Lb(E, F ) and that the set {T (x) : T ∈ D} is bounded
above in F for each x ∈ E+. It is easy to see that without loss of generality
we can assume that D ⊆ L+

b (E, F ). Define S : E+ → F+ by

S(x) = sup
{
T (x) : T ∈ D

}
,

and we claim that S is additive. To see this, let x, y ∈ E+. Since for
each T ∈ D we have T (x + y) = T (x) + T (y) ≤ S(x) + S(y), we see that
S(x + y) ≤ S(x) + S(y) holds. On the other hand, if T1, T2 ∈ D, then pick
T3 ∈ D satisfying T1 ≤ T3 and T2 ≤ T3, and note that

T1(x) + T2(y) ≤ T3(x) + T3(y) = T3(x + y) ≤ S(x + y)

implies S(x) + S(y) ≤ S(x + y). Therefore, S(x + y) = S(x) + S(y) holds,
and so S is additive. By Theorem 1.10 the mapping S defines a positive
operator from E to F , and a routine argument shows that S = sup D holds
in Lb(E, F ).

Our next objective is to describe the lattice operations of Lb(E, F ) in
terms of directed sets. To do this, we need a result from the theory of
Riesz spaces known as the Riesz Decomposition Property; it is due to
F. Riesz [167].

Theorem 1.20 (The Riesz Decomposition Property). Let x1, . . . , xn and
y1, . . . , ym be positive vectors in a Riesz space. If

n∑
i=1

xi =
m∑

j=1

yj

holds, then there exists a finite subset {zij : i = 1, . . . , n; j = 1, . . . , m} of
positive vectors such that

xi =
m∑

j=1

zij , for each i = 1, . . . , n ,
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and

yj =
n∑

i=1

zij , for each j = 1, . . . , m .

Proof. We shall use induction on m. For m = 1 the desired conclusion
follows from Theorem 1.13. Thus, assume the result to be true for some m
and all n = 1, 2, . . . . Let

n∑
i=1

xi =
m+1∑
j=1

yj ,

where the vectors xi and the yj are all positive. Since
∑m

j=1 yj ≤
∑n

i=1 xi

holds, it follows from Theorem 1.13 that there exist vectors u1, . . . , un sat-
isfying 0 ≤ ui ≤ xi for each i = 1, . . . , n and

∑n
i=1 ui =

∑m
j=1 yj . There-

fore, from our induction hypothesis, there exists a set of positive vectors
{zij : i = 1, . . . , n; j = 1, . . . , m} such that:

ui =
m∑

j=1

zij for i = 1, . . . , n and yj =
n∑

i=1

zij for j = 1, . . . , m .

For each i = 1, . . . , n put zi,m+1 = xi − ui ≥ 0 and note that the collection
of positive vectors

{
zij : i = 1, . . . , n; j = 1, . . . , m + 1

}
satisfies

xi =
m+1∑
j=1

zij for i = 1, . . . , n and yj =
n∑

i=1

zij for j = 1, . . . , m + 1 .

Thus, the conclusion is valid for m + 1 and all n = 1, 2, . . ., and the proof is
finished.

We are now in a position to express the lattice operations of Lb(E, F )
in terms of directed sets.

Theorem 1.21. If E and F are two Riesz spaces with F Dedekind complete,
then for all S, T ∈ Lb(E, F ) and each x ∈ E+ we have:

(1)
{ n∑

i=1

S(xi) ∨ T (xi) : xi ∈ E+ and
n∑

i=1

xi = x
}

↑ [S ∨ T ](x) .

(2)
{ n∑

i=1

S(xi) ∧ T (xi) : xi ∈ E+ and
n∑

i=1

xi = x
}

↓ [S ∧ T ](x) .

(3)
{ n∑

i=1

|T (xi)| : xi ∈ E+ and
n∑

i=1

xi = x
}

↑ |T |(x) .
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Proof. (1) Consider the set

D =
{ n∑

i=1

S(xi) ∨ T (xi) : xi ∈ E+ for each i and
n∑

i=1

xi = x
}

.

Since
∑n

i=1 xi = x with each xi ∈ E+ implies

n∑
i=1

S(xi) ∨ T (xi) ≤
n∑

i=1

[
(S ∨ T )xi

]
∨
[
(S ∨ T )xi

]
= [S ∨ T ](x) ,

we see that D ≤ [S ∨ T ](x). On the other hand, if D ≤ u holds, then for
each y, z ∈ E+ with y + z = x we have

S(y) + T (z) ≤ S(y) ∨ T (y) + S(z) ∨ T (z) ≤ u ,

and consequently

[S ∨ T ](x) = sup
{
S(y) + T (z) : y, z ∈ E+ and y + z = x

}
≤ u .

Thus, sup D = [S ∨ T ](x), and it remains to be shown that D is directed
upward.

To this end, let x =
∑n

i=1 xi =
∑m

j=1 yj with all the xi and yj in E+. By
Theorem 1.20 there exists a finite collection {zij : i = 1, . . . , n; j = 1, . . . , m}
of positive vectors such that

xi =
m∑

j=1

zij , for each i = 1, . . . , n ,

and

yj =
n∑

i=1

zij , for each j = 1, . . . , m .
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In particular, we have
∑n

i=1

∑m
j=1 zij = x. On the other hand, using the

lattice identity x ∨ y = 1
2(x + y + |x − y|), we see that

n∑
i=1

S(xi) ∨ T (xi)

= 1
2

n∑
i=1

[
S(xi) + T (xi) + |S(xi) − T (xi)|

]

= 1
2

n∑
i=1

[ m∑
j=1

S(zij) +
m∑

j=1

T (zij) +
∣∣∣

m∑
j=1

{
S(zij) − T (zij)

}∣∣∣
]

≤ 1
2

n∑
i=1

[ m∑
j=1

{
S(zij) + T (zij) + |S(zij) − T (zij)|

}]

=
n∑

i=1

m∑
j=1

S(zij) ∨ T (zij) .

Similarly,
m∑

j=1

S(yj) ∨ T (yj) ≤
n∑

i=1

m∑
j=1

S(zij) ∨ T (zij)

holds, and so D is directed upward.
(2) Use (1) in conjunction with the identity T ∧ S = −

[
(−S) ∨ (−T )

]
.

(3) Use (1) and the identity |T | = T ∨ (−T ).

The next result presents an interesting local approximation property of
positive operators.

Theorem 1.22. Let T : E → F be a positive operator between two Riesz
spaces with F Dedekind σ-complete. Then for each x ∈ E+ there exists a
positive operator S : E → F such that:

(1) 0 ≤ S ≤ T .

(2) S(x) = T (x).

(3) S(y) = 0 for all y ⊥ x.

Proof. Let x ∈ E+ be fixed and define S : E+ → F+ by

S(y) = sup
{
T (y ∧ nx) : n = 1, 2, . . .

}
.

(The supremum exists since F is Dedekind σ-complete and the sequence
{T (y ∧ nx)} is bounded above in F by Ty.) We claim that S is additive.

To see this, let y, z ∈ E+. From (y + z) ∧ nx ≤ y ∧ nx + z ∧ nx we get

T
(
(y + z) ∧ nx

)
≤ T (y ∧ nx) + T (z ∧ nx) ≤ S(y) + S(z) ,
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and so S(y + z) ≤ S(y) + S(z). On the other hand, for each m and n we
have y ∧ nx + z ∧ mx ≤ (y + z) ∧ (n + m)x, and thus

T (y ∧ nx) + T (z ∧ mx) ≤ T
(
y + z) ∧ (n + m)x

)
≤ S(y + z)

holds for all n and m. This implies S(y) + S(z) ≤ S(y + z), and hence
S(y + z) = S(y) + S(z), so that S is additive.

By Theorem 1.10 the mapping S extends uniquely to all of E as a positive
operator. Now it is a routine matter to verify that the operator S satisfies
the desired properties.

As an application of the preceding result let us derive some formulas that
are in some sense the “dual” formulas to those stated after Theorem 1.18.

Theorem 1.23. If T : E → F is a positive operator between two Riesz
spaces with F Dedekind σ-complete, then for each x ∈ E we have:

T (x+) = max
{
S(x) : S ∈ L(E, F ) and 0 ≤ S ≤ T

}
.

T (x−) = max
{
−S(x) : S ∈ L(E, F ) and 0 ≤ S ≤ T

}
.

T (|x|) = max
{
S(x) : S ∈ L(E, F ) and − T ≤ S ≤ T

}
.

Proof. (1) Let x ∈ E be fixed. By Theorem 1.22 there exists a positive
operator R : E → F such that 0 ≤ R ≤ T , R(x+) = T (x+), and R(x−) = 0.
Therefore, T (x+) = R(x). On the other hand, if S ∈ L(E, F ) satisfies
0 ≤ S ≤ T , then we have S(x) ≤ S(x+) ≤ T (x+), and the conclusion
follows.

(2) Apply (1) to the identity x− = (−x)+.

(3) If the operator S : E → F satisfies −T ≤ S ≤ T , then

S(x) = S(x+) − S(x−) ≤ T (x+) + T (x−) = T (|x|)
holds. On the other hand, according to Theorem 1.22, there exist two posi-
tive operators R1, R2 : E → F bounded by T such that:

(a) R1(x+) = T (x+) and R1(x−) = 0.

(b) R2(x−) = T (x−) and R2(x+) = 0.

Then the operator S = R1 − R2 satisfies −T ≤ S ≤ T and T (|x|) = S(x),
and the desired conclusion follows.

Now let {Ei : i ∈ I} be a family of Riesz spaces. Then it is not difficult
to check that the Cartesian product ΠEi, under the ordering {xi} ≥ {yi}
whenever xi ≥ yi holds in Ei for each i ∈ I, is a Riesz space. Clearly, if
x = {xi} and y = {yi} are vectors of ΠEi, then

x ∨ y = {xi ∨ yi} and x ∧ y = {xi ∧ yi} .
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The direct sum Σ⊕Ei (or more formally Σi∈I ⊕Ei) is the vector subspace
of ΠEi consisting of all vectors x = {xi} for which xi = 0 holds for all
but a finite number of indices i. With the pointwise algebraic and lattice
operations Σ ⊕ Ei is a Riesz subspace of ΠEi (and hence a Riesz space in
its own right). Note that if, in addition, each Ei is Dedekind complete, then
ΠEi and Σ ⊕ Ei are likewise both Dedekind complete Riesz spaces.

It is not difficult to see that every operator T : Σ⊕Ei → Σ⊕Fj between
two direct sums of families of Riesz spaces can be represented by a matrix
T = [Tji], where Tji : Ei → Fj are operators defined appropriately. Some-
times it pays to know that the algebraic and lattice operations represented
by matrices are the pointwise ones. The next result (whose easy proof is left
for the reader) clarifies the situation.

Theorem 1.24. Let {Ei : i ∈ I} and {Fj : j ∈ J} be two families of Riesz
spaces with each Fj Dedekind complete. If S = [Sji] and T = [Tji] are order
bounded operators from Σ ⊕ Ei to Σ ⊕ Fj, then

(1) S + T = [Sji + Tji] and λS = [λSji], and

(2) S ∨ T = [Sji ∨ Tji] and S ∧ T = [Sji ∧ Tji]

hold in Lb(Σ ⊕ Ei, Σ ⊕ Fj).

Exercises

1. Let E be an Archimedean Riesz space and let A ⊆ R be nonempty and
bounded above. Show that for each x ∈ E+ the supremum of the set
Ax := {αx : α ∈ A} exists and sup(Ax) = (sup A)x.

2. Show that in a Riesz space x ⊥ y implies
(a) αx ⊥ βy for all α, β ∈ R, and
(b) |x + y| = |x| + |y|.

Use the conclusion in (b) to establish that if in a Riesz space the
nonzero vectors x1, . . . , xn are pairwise disjoint, then x1, . . . , xn are lin-
early independent. [Hint : If |x| ∧ |y| = 0, then

|x + y| ≥
∣∣|x| − |y|

∣∣ = |x| ∨ |y| − |x| ∧ |y|
= |x| ∨ |y| + |x| ∧ |y| = |x| + |y| ≥ |x + y| .]

3. In this exercise we ask you to complete the missing details in Exam-
ple 1.11. Let G be the lexicographic plane. (That is, we con-
sider G = R

2 as a Riesz space under the lexicographic ordering
(x1, x2) ≥ (y1, y2) whenever either x1 > y1 or else x1 = y1 and x2 ≥ y2.)
Also, let φ : R → R be an additive function that is not linear (i.e., not of
the form φ(x) = cx).

Show that the mapping T : R
+ → G+ defined by

T (x) = (x, φ(x))
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is additive but that it cannot be extended to a positive operator from R

to G. Why does this not contradict Theorem 1.10?

4. Let E and F be two Riesz spaces with F Dedekind complete, and let A
be a nonempty subset of Lb(E,F ). Show that supA exists in Lb(E,F )
if and only if for each x ∈ E+ the set

{
(
∨n

i=1 Ti)x : T1, . . . , Tn ∈ A
}

is
bounded above in F .

5. Consider the positive operators S, T : L1[0, 1] → L1[0, 1] defined by

S(f) = f and T (f) =
[∫ 1

0

f(x) dx
]
· 1 ,

where 1 is the constant function one. Show that S ∧ T = 0.

6. Let E and F be two Riesz spaces with F Dedekind complete. Then for
each T ∈ Lb(E,F ) and each x ∈ E+ show that:

T+(x) = sup
{
(Ty)+ : 0 ≤ y ≤ x

}
.

T−(x) = sup
{
(Ty)− : 0 ≤ y ≤ x

}
.

7. Let T : E → F be a positive operator between two Riesz spaces with F
Dedekind complete. If x, y ∈ E, then show that:
(a) T (x ∨ y) = max

{
Rx + Sy : R,S ∈ L+

b (E,F ) and R + S = T
}

.
(b) T (x ∧ y) = min

{
Rx + Sy : R,S ∈ L+

b (E,F ) and R + S = T
}

.

8. If 0 < p < 1, then show that the only positive operator from Lp[0, 1] to
C[0, 1] is the zero operator.

9. Consider the continuous function g : [0, 1] → [0, 1] defined by g(x) = x
if 0 ≤ x ≤ 1

2 and g(x) = 1
2 if 1

2 < x ≤ 1. Now define the operator
T : C[0, 1] → C[0, 1] by [Tf ](x) = f

(
g(x)
)
− f
(

1
2

)
.

Show that T is a regular operator whose modulus does not exist.

10. Let T : C[0, 1] → C[0, 1] be the regular operator defined by

[Tf ](x) = f(sin x) − f(cos x) .

Show that T+ and T− both exist and that

[T+f ](x) = f(sin x) and [T−f ](x) = f(cos x) .

11. For each n ≥ 2 fix a continuous function en : [0, 1] → [0, 1] such that:
(a) 0 ≤ en ≤ 1.
(b) en = 0 outside

[
1
2 + 1

n+1 , 1
2 + 1

n

]
.

(c) en(x) = 1 for some x ∈
[
1
2 + 1

n+1 , 1
2 + 1

n

]
.

Now define the operator T : C[0, 1] → C[0, 1] by

Tf =
∞∑

n=2

[∫ 1

0

f(x) sin(nπx) dx
]
en .

Show that T is indeed an operator from C[0, 1] to C[0, 1], that T is a
regular operator, and that its modulus does not exist.

12. Prove Theorem 1.24.



1.2. Extensions of Positive Operators 23

1.2. Extensions of Positive Operators

In this section we shall gather some basic extension theorems for operators,
and, in particular, for positive operators.

A function p : G → F , where G is a (real) vector space and F is an
ordered vector space, is called sublinear whenever

(a) p(x + y) ≤ p(x) + p(y) for all x, y ∈ G, and
(b) p(λx) = λp(x) for all x ∈ G and all λ ≥ 0.

The next result is the most general version of the classical Hahn–Banach
extension theorem. This theorem plays a fundamental role in modern analy-
sis and without any doubt it will be of great importance to us here. It is
due to H. Hahn [74] and S. Banach [30].

Theorem 1.25 (Hahn–Banach). Let G be a (real) vector space, F a Dede-
kind complete Riesz space, and let p : G → F be a sublinear function. If H is
a vector subspace of G and S : H → F is an operator satisfying S(x) ≤ p(x)
for all x ∈ H, then there exists some operator T : G → F such that:

(1) T = S on H, i.e., T is a linear extension of S to all of G.
(2) T (x) ≤ p(x) holds for all x ∈ G.

Proof. The critical step is to show that S has a linear extension satisfying
(2) on an arbitrary vector subspace generated by H and one extra vector. If
this is done, then an application of Zorn’s lemma guarantees the existence
of an extension of S to all of G with the desired properties.

To this end, let x /∈ H, and let V =
{
y + λx : y ∈ H and λ ∈ R

}
. If

T : V → F is a linear extension of S, then

T (y + λx) = S(y) + λT (x)

must hold true for all y ∈ H and all λ ∈ R. Put z = T (x). To complete the
proof, we must establish the existence of some z ∈ F such that

S(y) + λz ≤ p(y + λx) (�)

holds for all y ∈ H and λ ∈ R. For λ > 0, (�) is equivalent to

S(y) + z ≤ p(y + x)

for all y ∈ H, while for λ < 0 the inequality (�) is equivalent to

S(y) − z ≤ p(y − x)

for all y ∈ H. The last two inequalities certainly will be satisfied by a choice
of z for which

S(y) − p(y − x) ≤ z ≤ p(u + x) − S(u) (��)

holds for all y, u ∈ H.
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To see that there exists some z ∈ F satisfying (��), start by observing
that for each y, u ∈ H we have

S(y) + S(u) = S(y + u) ≤ p(y + u) = p
(
y − x + (u + x)

)
≤ p(y − x) + p(u + x) ,

and so
S(y) − p(y − x) ≤ p(u + x) − S(u)

holds for all y, u ∈ H. This inequality in conjunction with the Dedekind
completeness of F guarantees that both suprema

s = sup
{
S(y)− p(y−x) : y ∈ H

}
and t = inf

{
p(u + x)−S(u) : u ∈ H

}
exist in F , and satisfy s ≤ t. Now any z ∈ F satisfying s ≤ z ≤ t (for
instance z = s) satisfies (��), and hence (�). This complete the proof of the
theorem.

Recall that a vector subspace G of a Riesz space E is said to be a Riesz
subspace (or a vector sublattice) whenever G is closed under the lattice
operations of E, i.e., whenever for each pair x, y ∈ G the vector x∨y (taken
in E) belongs to G.

As a first application of the Hahn–Banach extension theorem we present
the following useful extension property of positive operators.

Theorem 1.26. Let T : E → F be a positive operator between two Riesz
spaces with F Dedekind complete. Assume also that G is a Riesz subspace
of E and that S : G → F is an operator satisfying 0 ≤ Sx ≤ Tx for all
x ∈ G+. Then S can be extended to a positive operator from E to F such
that 0 ≤ S ≤ T holds in L(E, F ).

Proof. Define p : E → F by p(x) = T (x+), and note that p is sublinear
and satisfies S(x) ≤ p(x) for all x ∈ G. By Theorem 1.25 there exists a
linear extension of S to all of E (which we denote by S again) satisfying
S(x) ≤ p(x) for all x ∈ E. Now if x ∈ E+, then

−S(x) = S(−x) ≤ p(−x) = T
(
(−x)+

)
= T (0) = 0 ,

and so 0 ≤ S(x) ≤ p(x) = T (x) holds, as desired.

The rest of the section is devoted to extension properties of positive
operators. The first result of this kind informs us that a positive operator
whose domain is a Riesz subspace extends to a positive operator if and only
if it is dominated by a monotone sublinear mapping. As usual, a mapping
f : E → F between two ordered vector spaces is called monotone whenever
x ≤ y in E implies f(x) ≤ f(y) in F .
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Theorem 1.27. Let E and F be Riesz spaces with F Dedekind complete.
If G is a Riesz subspace of E and T : G → F is a positive operator, then the
following statements are equivalent.

(1) T extends to a positive operator from E to F .
(2) T extends to an order bounded operator from E to F .
(3) There exists a monotone sublinear mapping p : E → F satisfying

T (x) ≤ p(x) for all x ∈ G.

Proof. (1) =⇒ (2) Obvious.

(2) =⇒ (3) Let S ∈ Lb(E, F ) satisfy S(x) = T (x) for all x ∈ G. Then
the mapping p : E → F defined by p(x) = |S|(x+) is monotone, sublinear
and satisfies

T (x) ≤ T (x+) = S(x+) ≤ |S|(x+) = p(x)
for all x ∈ G.

(3) =⇒ (1) Let p : E → F be a monotone sublinear mapping satisfying
T (x) ≤ p(x) for all x ∈ G. Then the formula q(x) = p(x+) defines a
sublinear mapping from E to F such that

T (x) ≤ T (x+) ≤ p(x+) = q(x)

holds for all x ∈ G. Thus, by the Hahn–Banach Extension Theorem 1.25
there exists an extension R ∈ L(E, F ) of T satisfying R(x) ≤ q(x) for all
x ∈ E. In particular, if x ∈ E+, then the relation

−R(x) = R(−x) ≤ q(−x) = p
(
(−x)+

)
= p(0) = 0

implies R(x) ≥ 0. That is, R is a positive linear extension of T to all of E,
and the proof is finished.

A subset A of a Riesz space is called solid whenever |x| ≤ |y| and y ∈ A
imply x ∈ A. A solid vector subspace of a Riesz space is referred to as
an ideal. From the lattice identity x ∨ y = 1

2(x + y + |x − y|), it follows
immediately that every ideal is a Riesz subspace.

The next result deals with restrictions of positive operators to ideals.

Theorem 1.28. If T : E → F is a positive operator between two Riesz
spaces with F Dedekind complete, then for every ideal A of E the formula

TA(x) = sup
{
T (y) : y ∈ A and 0 ≤ y ≤ x

}
, x ∈ E+ ,

defines a positive operator from E to F . Moreover, we have:

(a) 0 ≤ TA ≤ T .
(b) TA = T on A and TA = 0 on Ad.
(c) If B is another ideal with A ⊆ B, then TA ≤ TB holds.
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Proof. Note first that

TA(x) = sup
{
T (x ∧ y) : y ∈ A+

}
holds for all x ∈ E+. According to Theorem 1.10 it suffices to show that TA

is additive on E+.
To this end, let x, y ∈ E+. If z ∈ A+, then the inequality

(x + y) ∧ z ≤ x ∧ z + y ∧ z

implies that T
(
(x + y) ∧ z

)
≤ T (x ∧ z) + T (y ∧ z) ≤ TA(x) + TA(y), and

hence
TA(x + y) ≤ TA(x) + TA(y) .

On the other hand, the inequality x ∧ u + y ∧ v ≤ (x + y) ∧ (u + v) implies

TA(x) + TA(y) ≤ TA(x + y) .

Therefore, TA(x + y) = TA(x) + TA(y) holds, so that TA is additive on E+.
Properties (1)–(3) are now easy consequences of the formula defining the

operator TA.

As mentioned before, if G is a vector subspace of an ordered vector space
and F is another ordered vector space, then it is standard to call an operator
T : G → F positive whenever 0 ≤ x ∈ G implies 0 ≤ T (x) ∈ F .

Now consider a positive operator T : G → F , where G is a vector sub-
space of an ordered vector space E and F is a Dedekind complete Riesz
space. We shall denote by E(T ) the collection of all positive extensions of T
to all of E. That is,

E(T ) :=
{
S ∈ L(E, F ) : S ≥ 0 and S = T on G

}
.

The set E(T ) is always a convex subset of L(E, F ), i.e. λS+(1−λ)R ∈ E(T )
holds for all S, R ∈ E(T ) and all 0 ≤ λ ≤ 1. The set E(T ) might happen to
be empty. The next example presents such a case.

Example 1.29. Let E = Lp[0, 1] with 0 < p < 1 and let G = L1[0, 1].
Clearly, G ⊆ E and G is an ideal of E. (Here f ≥ g means that f(x) ≥ g(x)
holds for almost all x with respect to the Lebesgue measure.)

Now consider the operator T : G → R defined by

T (f) =
∫ 1

0
f(x) dx .

We claim that T does not have a positive linear extension to all of E. To
see this, assume by way of contradiction that T is extendable to a positive
operator from E to R. In particular, this implies that if f ∈ E is defined by
f(x) = 1

x , then the set of real numbers

D =
{
T (g) : g ∈ G and 0 ≤ g ≤ f

}
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is bounded. on the other hand, if gn = fχ( 1
n

,1), then T (gn) = lnn ∈ D holds
for each n. Therefore, D must be unbounded, a contradiction. Consequently,
in this case we have E(T ) = �©.

A positive operator T : G → F (where G is a vector subspace of an
ordered vector space E) is said to have a smallest extension whenever
there exists some S ∈ E(T ) satisfying S ≤ R for all R ∈ E(T ), in which case
S is called the smallest extension of T . In other words, T has a smallest
extension if and only if min E(T ) exists in L(E, F ).

It turns out that an extendable positive operator whose domain is an
ideal always has a smallest extension.

Theorem 1.30. Let E and F be two Riesz spaces with F Dedekind complete,
let A be an ideal of E, and let T : A → F be a positive operator. If E(T ) �= �©,
then T has a smallest extension. Moreover, if in this case S = min E(T ),
then

S(x) = sup
{
Ty : y ∈ A and 0 ≤ y ≤ x

}
holds for all x ∈ E+.

Proof. Since T has (at least) one positive extension, the formula

TA(x) = sup
{
T (y) : y ∈ A and 0 ≤ y ≤ x

}
, x ∈ E+ ,

defines a positive operator from E to F satisfying TA = T on A, and so
TA ∈ E(T ). (See the proof of Theorem 1.28.)

Now if S ∈ E(T ), then S = T holds on A, and hence TA = SA ≤ S.
Therefore, TA = min E(T ) holds, as desired.

For a positive operator T : E → F with F Dedekind complete, Theo-
rem 1.30 implies that for each ideal A of E the positive operator TA is the
smallest extension of the restriction of T to A.

Among the important points of a convex set are its extreme points.
Recall that a vector e of a convex set C is said to be an extreme point of
C whenever the expression e = λx + (1 − λ)y with x, y ∈ C and 0 < λ < 1
implies x = y = e.

The extreme points of the convex set E(T ) have been characterized by
Z. Lipecki, D. Plachky, and W. Thomsen [116] as follows.

Theorem 1.31 (Lipecki–Plachky–Thomsen). Let E and F be two Riesz
spaces with F a Dedekind complete. If G is a vector subspace of E and
T : G → F is a positive operator, then for an operator S ∈ E(T ) the following
statements are equivalent:

(1) S is an extreme point of E(T ).
(2) For each x ∈ E we have inf

{
S(|x − y|) : y ∈ G

}
= 0.
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Proof. (1) =⇒ (2) Let S be an extreme point of E(T ). Define the mapping
p : E → F for each x ∈ E by

p(x) = inf
{
S(|x − y|) : y ∈ G

}
.

Clearly, p is a sublinear mapping that satisfies 0 ≤ p(x) = p(−x) ≤ S|x| for
all x ∈ E, and p(y) = 0 for each y ∈ G.

Next, we claim that p(x) = 0 holds for all x ∈ E. To see this, assume by
way of contradiction that p(x) > 0 holds for some x ∈ E. Define the operator
R : {λx : λ ∈ R} → F by R(λx) = λp(x), and note that R(λx) ≤ p(λx)
holds. So, by the Hahn–Banach Extension Theorem 1.25, the operator R
has a linear extension to all of E (which we shall denote by R again) such
that R(z) ≤ p(z) holds for all z ∈ E; clearly, R �= 0. It is easy to see that
|R(z)| ≤ p(z) for all z ∈ E, and so R(y) = 0 for all y ∈ G. Since for each
z ≥ 0 we have R(z) ≤ p(z) ≤ S(|z|) = S(z) and

−R(z) = R(−z) ≤ p(−z) ≤ S(| − z|) = S(z) ,

it easily follows that S −R ≥ 0 and S + R ≥ 0 both hold. Thus, S −R and
S + R both belong to E(T ). Now the identity

S = 1
2(S − R) + 1

2(S + R) ,

in conjunction with S − R �= S and S + R �= S, shows that S is not an
extreme point of E(T ), a contradiction. Thus, p(x) = 0 holds for each
x ∈ E, as desired.

(2) =⇒ (1) Let S satisfy (2) and assume that S = λQ + (1 − λ)R with
Q, R ∈ E(T ) and 0 < λ < 1. Then for each x, y ∈ E we have∣∣Q(x) − Q(y)

∣∣ ≤ Q|x − y| =
(

1
λS − 1−λ

λ R
)
|x − y| ≤ 1

λS|x − y| .

In particular, if x ∈ E and y ∈ G, then from S(y) = Q(y) = T (y) it follows
that∣∣S(x) − Q(x)

∣∣ ≤ ∣∣S(x) − S(y)
∣∣+ ∣∣Q(y) − Q(x)

∣∣ ≤ (1 + 1
λ

)
S|x − y| .

Taking into account our hypothesis, the last inequality yields S(x) = Q(x)
for each x ∈ E, and this shows that S is an extreme point of E(T ).

Let us say that a vector subspace G of an ordered vector space E is
majorizing E whenever for each x ∈ E there exists some y ∈ G with x ≤ y
(or, equivalently, if for each x ∈ E there exists some y ∈ G with y ≤ x).

It is important to know that every positive operator whose domain is
a majorizing vector subspace and whose values are in a Dedekind complete
Riesz space always has a positive extension. This is a classical result due to
L. V. Kantorovich [90].
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Theorem 1.32 (Kantorovich). Let E and F be two ordered vector spaces
with F a Dedekind complete Riesz space. If G is a majorizing vector subspace
of E and T : G → F is a positive operator, then T has a positive linear
extension to all of E.

Proof. Fix x ∈ E and let y ∈ G satisfy x ≤ y. Since G is majorizing there
exists a vector u ∈ G with u ≤ x. Hence, u ≤ y and the positivity of T
implies T (u) ≤ T (y) for all y ∈ G with x ≤ y. In particular, it follows that
inf
{
T (y) : y ∈ G and x ≤ y

}
exists in F for each x ∈ E. Thus, a mapping

p : E → F can be defined via the formula

p(x) = inf
{
T (y) : y ∈ G and x ≤ y

}
.

Clearly, T (x) = p(x) holds for each x ∈ G and an easy argument shows that
p is also sublinear.

Now, by the Hahn–Banach Extension Theorem 1.25, the operator T has
a linear extension S to all of E satisfying S(z) ≤ p(z) for each z ∈ E. If
z ∈ E+, then −z ≤ 0, and so from

−S(z) = S(−z) ≤ p(−z) ≤ T (0) = 0 ,

we see that S(z) ≥ 0. This shows that S is a positive linear extension of T
to all of E.

It is a remarkable fact that in case the domain of a positive operator T
is a majorizing vector subspace, then the convex set E(T ) is not merely non-
empty but it also has extreme points. This result is due to Z. Lipecki [115].

Theorem 1.33 (Lipecki). Let E and F be two Riesz spaces with F Dedekind
complete. If G is a majorizing vector subspace of E and T : G → F is a
positive operator, then the nonempty convex set E(T ) has an extreme point.

Proof. According to Theorem 1.31 we must establish the existence of some
S ∈ E(T ) satisfying

inf
{
S
(
|x − y|

)
: y ∈ G

}
= 0

for all x ∈ E.
Start by considering pairs (H, S) where H is a vector subspace majoriz-

ing E and S : H → F is a positive operator. For every such pair (H, S)
define pH,S : E → F by

pH,S (x) = inf
{
S(y) : y ∈ H and x ≤ y

}
.

It should be clear that pH,S is a sublinear mapping satisfying pH,S (y) = S(y)
for every y ∈ H. In addition, if (H1, S1) and (H2, S2) satisfy H1 ⊆ H2 and
S2 = S1 on H1, then pH2,S2

(x) ≤ pH1,S1
(x) holds for all x ∈ E.

Now let C be the collection of all pairs (H, S) such that:
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(1) H is a vector subspace of E with G ⊆ H (and so H majorizes E).

(2) S : H → F is a positive operator with S = T on G.

(3) inf
{
pH,S

(
|x − y|

)
: y ∈ G

}
= 0 holds in F for all x ∈ H.

In view of (G, T ) ∈ C, the set C is nonempty. Moreover, if we define a
binary relation ≥ on C by letting (H2, S2) ≥ (H1, S1) whenever H2 ⊇ H1

and S2 = S1 on H1, then ≥ is an order relation on C. By a routine argument
we can verify that every chain of C has an upper bound in C. Therefore,
by Zorn’s lemma the collection C has a maximal element, say (M, R). The
rest of the proof is devoted to proving that M = E. (If this is done, then
R = pM,R must be the case, which by Theorem 1.31 shows that R must be
an extreme point of E(T ).)

To this end, assume by way of contradiction that there exists some vector
x that does not belong to M . Consider H = {u + λx : u ∈ M and λ ∈ R},
and then define S : H → F by S(u + λx) = R(u) + λpM,R(x). Clearly,
M is a proper subspace of H, S = R holds on M , and S : H → F is a
positive operator. (For the positivity of S let u + λx ≥ 0 with u ∈ M . For
λ > 0 the inequality x ≤ −u

λ implies pM,R(x) ≥ −R
(

u
λ

)
, and consequently

S(u + λx) = R(u) + λpM,R(x) ≥ 0. The case λ < 0 is similar, while the case
λ = 0 is trivial.) Finally, we verify that (H, S) satisfies (3). First, observe
that by the sublinearity of pH,S the set

V =
{
y ∈ E| inf

{
pH,S

(
|y − z|

)
: z ∈ M

}
= 0
}

is a vector subspace of E satisfying M ⊆ V . Also, from

0 ≤ inf
{
pH,S

(
|x − z|

)
: z ∈ M

}
≤ inf

{
pH,S (z − x) : z ∈ M and x ≤ z

}
= inf

{
R(z) − pM,R(x) : z ∈ M and x ≤ z

}
= inf

{
R(z) : z ∈ M and x ≤ z

}
− pM,R(x) = 0 ,

we see that x ∈ V , and hence H ⊆ V . Now for arbitrary u ∈ H, z ∈ M ,
and v ∈ G we have

pH,S

(
|u − v|

)
≤ pH,S

(
|u − z|

)
+ pH,S

(
|v − z|

)
≤ pH,S

(
|u − z|

)
+ pM,R

(
|v − z|

)
,

and so from (M, R) ∈ C and u ∈ H ⊆ V , it follows that

inf
{
pH,S

(
|u − v|

)
: v ∈ G

}
= 0

holds for all u ∈ H.
Thus, (H, S) ∈ C. However, (H, S) ≥ (M, R) and (H, S) �= (M, R)

contradict the maximality of (M, R). Therefore, M = E must be true, as
required.
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Exercises

1. Let E and F be two Riesz spaces with F Dedekind complete, and let A
be an ideal of E. For each T ∈ Lb(E,F ) let R(T ) denote the restriction
of T to A. Show that the positive operator R : Lb(E,F ) → Lb(A,F )
satisfies

R(S ∨ T ) = R(S) ∨R(T ) and R(S ∧ T ) = R(S) ∧R(T )

for all S, T ∈ Lb(E,F ). 1

2. For two arbitrary solid sets A and B of a Riesz space show that:
(a) A + B is a solid set.
(b) If 0 ≤ c ∈ A + B holds, then there exist 0 ≤ a ∈ A and 0 ≤ b ∈ B

with c = a + b.
3. Let T : E → F be a positive operator between two Riesz spaces with F

Dedekind complete. If two ideals A and B of E satisfy A ⊥ B, then show
that:
(a) TA ∧ TB = 0.
(b) The ideal A + B satisfies TA+B = TA + TB = TA ∨ TB .

4. As usual, �∞ denotes the Riesz space of all bounded real sequence, and
c the Riesz subspace of �∞ consisting of all convergent sequences. If
φ : c → R is the positive operator defined by

φ(x1, x2, . . .) = lim
n→∞

xn ,

then show that φ has a positive linear extension to all of �∞.

1.3. Order Projections

In this section we shall study a special class of positive operators known as
order (or band) projections. Before starting our discussion, let us review a
few properties of order dense Riesz subspaces. Recall that a Riesz subspace
G of a Riesz space E is said to be order dense in E whenever for each
0 < x ∈ E (i.e., 0 ≤ x and x �= 0) there exists some y ∈ G with 0 < y ≤ x.

The following characterization of order dense Riesz subspaces in Archi-
medean Riesz spaces will be used freely in this book.

Theorem 1.34. A Riesz subspace G of an Archimedean Riesz space E is
order dense in E if and only if for each x ∈ E+ we have{

y ∈ G : 0 ≤ y ≤ x
}
↑ x .

Proof. If sup
{
y ∈ G : 0 ≤ y ≤ x

}
= x holds in E for each x ∈ E+, then G

is clearly order dense in E. For the converse, assume that G is order dense

1An operator between spaces of operators is referred to as a transformer. So,
the operator R is an example of a transformer.
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in E, and let x ∈ E+. Assume by way of contradiction that some z ∈ E
satisfies z < x and y ≤ z for each y ∈ G with 0 ≤ y ≤ x. Then, by the order
denseness of G in E, there exists some u ∈ G with 0 < u ≤ x − z. From
0 ≤ u ≤ x we see that u ≤ z, and therefore 0 < 2u = u+u ≤ (x−z)+z = x.
By induction, 0 < nu ≤ x holds for each n, contradicting the Archimedean
property of E. Thus, {y ∈ G : 0 ≤ y ≤ x

}
↑ x holds in E, and the proof is

finished.

Consider an order dense Riesz subspace G of a Riesz space E. It is
useful to know that the embedding of G into E preserves arbitrary suprema
and infima. The result (whose straightforward proof is left for the reader)
is stated next.

Theorem 1.35. Let G be either an ideal or an order dense Riesz subspace
of a Riesz space E, and let D ⊆ G+ satisfy D↓ . Then D ↓ 0 holds in G if
and only if D ↓ 0 holds in E.

Recall that a subset A of a Riesz space is called solid whenever |x| ≤ |y|
and y ∈ A imply x ∈ A. A solid vector subspace is called an ideal. From
Theorem 1.13 it readily follows that if A and B are solid subsets of a Riesz
space, then their algebraic sum

A + B :=
{
a + b : a ∈ A and b ∈ B

}

is likewise a solid set. In particular, the algebraic sum of two ideals also is
an ideal.

The next theorem describes the basic properties of order dense ideals.
Keep in mind that the disjoint complement of an arbitrary nonempty set of
a Riesz space is always an ideal.

Theorem 1.36. For an ideal A of a Riesz space E we have the following.

(1) The ideal A is order dense in E if and only if Ad = {0}.
(2) The ideal A ⊕ Ad is order dense in E.

(3) The ideal A is order dense in Add.

Proof. (1) Let A be order dense in E and let x ∈ Ad. If x �= 0 holds, then
there exists some y ∈ A with 0 < y ≤ |x|. This implies y ∈ A ∩ Ad = {0}, a
contradiction. Thus, Ad = {0} holds.

For the converse, assume that Ad = {0} holds and let 0 < x ∈ E. If
y ∧ x = 0 holds for all y ∈ A+, then x ∈ Ad = {0} also must be the case.
Thus, y ∧ x > 0 must be true for some y ∈ A+. But then y ∧ x ∈ A and
0 < y ∧ x ≤ x show that A is order dense in E.
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(2) If x ⊥ A ⊕ Ad, then x ⊥ A and x ⊥ Ad both hold. Therefore,
x ∈ Ad ∩ Add = {0}. This shows that (A ⊕ Ad)d = {0}. By part (1) the
ideal A ⊕ Ad is order dense in E.

(3) This follows immediately from part (1).

A net {xα} of a Riesz space is said to be order convergent to a vector x
(in symbols xα−→o x) whenever there exists another net {yα} with the same
index set satisfying yα ↓ 0 and |xα−x| ≤ yα for all indices α (abbreviated as
|xα − x| ≤ yα ↓ 0). A subset A of a Riesz space is said to be order closed
whenever {xα} ⊆ A and xα−→o x imply x ∈ A.

Lemma 1.37. A solid subset A of a Riesz space is order closed if and only
if {xα} ⊆ A and 0 ≤ xα ↑ x imply x ∈ A.

Proof. Assume that a solid set A of a Riesz space has the stated property
and let a net {xα} ⊆ A satisfy xα−→o x. Pick a net {yα} with the same
index net satisfying yα ↓ 0 and |xα − x| ≤ yα for each α. Now note that we
have (|x| − yα)+ ≤ |xα| for each α and 0 ≤ (|x| − yα)+ ↑ |x|, and from this
it follows that x ∈ A. That is, A is order closed.

An order closed ideal is referred to as a band. Thus, according to
Lemma 1.37 an ideal A is a band if and only if {xα} ⊆ A and 0 ≤ xα ↑ x
imply x ∈ A (or, equivalently, if and only if D ⊆ A+ and D ↑ x imply
x ∈ A). In the early developments of Riesz spaces a band was called a
normal subspace (G. Birkhoff [36], S. Bochner and R. S. Phillips [39]),
while F. Riesz was calling a band a famille complète.

Let A be a nonempty subset of a Riesz space E. Then the ideal gen-
erated by A is the smallest (with respect to inclusion) ideal that includes
A. A moment’s thought reveals that this ideal is

EA =
{

x ∈ E : ∃ x1, . . . , xn ∈ A and λ ∈ R
+ with |x| ≤ λ

n∑
i=1

|xi|
}

.

The ideal generated by a vector x ∈ E will be denoted by Ex. By the
preceding discussion we have

Ex =
{
y ∈ E : ∃λ > 0 with |y| ≤ λ|x|

}
.

Every ideal of the form Ex is referred to as a principal ideal.
Similarly, the band generated by a set A is the smallest band that

includes the set A. Such a band always exists (since it is the intersection
of the family of all bands that include A, and E is one of them.) Clearly,
the band generated by A coincides with the band generated by the ideal
generated by A. The band generated by a vector x is called the principal
band generated by x and is denoted by Bx.
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The band generated by an ideal is described as follows.

Theorem 1.38. If A is an ideal of a Riesz space E, then the band generated
by A is precisely the vector subspace:{

x ∈ E : ∃ {xα} ⊆ A+ with 0 ≤ xα ↑ |x|
}

.

In particular, every ideal is order dense in the band it generates.
Moreover, the principal band Bx generated by a vector x is given by

Bx =
{
y ∈ E : |y| ∧ n|x| ↑ |y|

}
.

Proof. Let B =
{
x ∈ E : ∃ {xα} ⊆ A+ with 0 ≤ xα ↑ |x|

}
. Clearly, every

band containing A must include B. Thus, in order to establish our result it
is enough to show that B is a band.

To this end, let x, y ∈ B. Pick two nets {xα} ⊆ A+ and {yβ} ⊆ A+ with
0 ≤ xα ↑ |x| and 0 ≤ yβ ↑ |y|. From

|x + y| ∧ (xα + yβ) ↑
(α,β)

|x + y| ∧ (|x| + |y|) = |x + y|

and
|λ|xα ↑ |λx| ,

we see that B is a vector subspace. Also, if |z| ≤ |x| holds, then from{
|z| ∧ xα

}
⊆ A and 0 ≤ |z| ∧ xα ↑ |z| ∧ |x| = |z|, it follows that z ∈ B.

Hence, B is an ideal. Finally, to see that B is a band, let {xα} ⊆ B satisfy
0 ≤ xα ↑ x. Put D = {y ∈ A : ∃α with 0 ≤ y ≤ xα}. Then D ⊆ A+ and
D ↑ x hold. Therefore, x ∈ B and so B is a band.

To establish the identity for Bx, let y ∈ Bx. By the above, there exists
a net {xα} ⊆ Ex with 0 ≤ xα ↑ |y|. Now given an index α there exists some
n with xα ≤ n|x|, and so xα ≤ |y| ∧ n|x| ≤ |y| holds. This easily implies
|y| ∧ n|x| ↑ |y|, and our conclusion follows.

From Theorem 1.8 it follows that Ad is always a band. It is important
to know that the band generated by a set A is precisely Add.

Theorem 1.39. The band generated by a nonempty subset A of an Archi-
medean Riesz space is precisely Add (and hence if A is a band, then A = Add

holds).

Proof. We mentioned before that the band generated by A is the same as
the band generated by the ideal generated by A. Therefore, we can assume
that A is an ideal. By part (3) of Theorem 1.36 we know that A is order
dense in Add, and hence (by Theorem 1.34) for each x ∈ Add there exists a
net {xα} ⊆ A with 0 ≤ xα ↑ |x|. This easily implies that Add is the smallest
band including A.
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A useful condition under which an ideal is necessarily a band is presented
next.

Theorem 1.40. Let A and B be two ideals in a Riesz space E such that
E = A ⊕ B. Then A and B are both bands satisfying A = Bd and B = Ad

(and hence A = Add and B = Bdd both hold).

Proof. Note first that for each a ∈ A and b ∈ B we have

|a| ∧ |b| ∈ A ∩ B = {0} ,

and so A ⊥ B. In particular, A ⊆ Bd.
On the other hand, if x ∈ Bd, then write x = a+b with a ∈ A and b ∈ B,

and note that b = x− a ∈ B ∩Bd = {0} implies x = a ∈ A. Thus, Bd ⊆ A,
and so A = Bd holds. This shows that A is a band. By the symmetry of
the situation B = Ad also holds.

A band B in a Riesz space E that satisfies E = B ⊕ Bd is referred to
as a projection band. The next result characterizes the ideals that are
projection bands.

Theorem 1.41. For an ideal B in a Riesz space E the following statements
are equivalent.

(1) B is a projection band, i.e., E = B ⊕ Bd holds.
(2) For each x ∈ E+ the supremum of the set B+ ∩ [0, x] exists in E

and belongs to B.
(3) There exists an ideal A of E such that E = B ⊕ A holds.

Proof. (1) =⇒ (2) Let x ∈ E+. Choose the (unique) vectors 0 ≤ y ∈ B
and 0 ≤ z ∈ Bd such that x = y + z. If u ∈ B+ satisfies u ≤ x = y + z, then
it follows from 0 ≤ (u − y)+ ≤ z ∈ Bd and (u − y)+ ∈ B that (u − y)+ = 0.
Thus, u ≤ y, and so y is an upper bound of the set B+ ∩ [0, x]. Since
y ∈ B ∩ [0, x], we see that y = sup

{
u ∈ B+ : u ≤ x

}
= sup B ∩ [0, x] in E.

(2) =⇒ (3) Fix some x ∈ E+, and let u = supB ∩ [0, x]. Clearly, u
belongs to B. Put y = x − u ≥ 0. If 0 ≤ w ∈ B, then 0 ≤ y ∧ w ∈ B, and
moreover from 0 ≤ u + y ∧ w ∈ B and

u + y ∧ w = (u + y) ∧ (u + w) = x ∧ (u + w) ≤ x ,

it follows that u + y ∧w ≤ u. Hence, y ∧w = 0 holds, and so y ∈ Bd. From
x = u + y we see that E = B ⊕ Bd, and therefore (3) holds with A = Bd.

(3) =⇒ (1) This follows from Theorem 1.40.

Not every band is a projection band, and a Riesz space in which every
band is a projection band is referred to as a Riesz space with the projection
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property. From the preceding theorem it should be clear that in a Dedekind
complete Riesz space every band is a projection band. This was proven
by F. Riesz [166] is one of his early fundamental papers on Riesz spaces.
Because it guarantees an abundance of order projections, we state it next
as a separate theorem.

Theorem 1.42 (F. Riesz). If B is a band in a Dedekind complete Riesz
space E, then E = B ⊕ Bd holds.

As usual, an operator P : V → V on a vector space is called a projection
if P 2 = P . If a projection P is defined on a Riesz space and P is also a
positive operator, then P will be referred to as a positive projection.

Now let B be a projection band in a Riesz space E. Thus, E = B ⊕Bd

holds, and so every vector x ∈ E has a unique decomposition x = x1 + x2,
where x1 ∈ B and x2 ∈ Bd. Then it is easy to see that a projection
PB : E → E is defined via the formula

PB(x) := x1 .

Clearly, PB is a positive projection. Any projection of the form PB is called
an order projection (or a band projection). Thus, the order projections
are associated with the projection bands in a one-to-one fashion.

Theorem 1.43. If B is a projection band of a Riesz space E, then

PB(x) = sup
{
y ∈ B : 0 ≤ y ≤ x

}
= sup B ∩ [0, x]

holds for all x ∈ E+.

Proof. Let x ∈ E+. Then (by Theorem 1.41) u = sup
{
y ∈ B : 0 ≤ y ≤ x

}
exists and belongs to B. We claim that u = PB(x).

To see this, write x = x1 + x2 with 0 ≤ x1 ∈ B and 0 ≤ x2 ∈ Bd, and
note that 0 ≤ x1 ≤ x implies 0 ≤ x1 ≤ u. Thus, 0 ≤ u − x1 ≤ x − x1 = x2,
and hence u − x1 ∈ Bd, Since u − x1 ∈ B and B ∩ Bd = {0}, we see that
u = x1, as claimed.

Among projections the order projections are characterized as follows.

Theorem 1.44. For an operator T : E → E on a Riesz space the following
statements are equivalent.

(1) T is an order projection.

(2) T is a projection satisfying 0 ≤ T ≤ I (where, of course, I is the
identity operator on E).

(3) T and I − T have disjoint ranges, i.e., Tx ⊥ y − Ty holds for all
x, y ∈ E.



1.3. Order Projections 37

Proof. (1) =⇒ (2) Obvious.

(2) =⇒ (3) Let x, y ∈ E+. Put z = Tx ∧ (I − T )y. From the inequality
0 ≤ z ≤ (I − T )y it follows that 0 ≤ Tz ≤ T (I − T )y = (T − T 2)y = 0, and
so Tz = 0. Similarly, (I − T )z = 0, and hence z = (I − T )z + Tz = 0 holds.
This shows that T and I − T have disjoint ranges.

(3) =⇒ (1) Let A and B be the ideals generated by the ranges of T and
I − T , respectively. By our hypothesis it follows that A ⊥ B, and from
x = Tx+(I −T )x we see that E = A⊕B. But then, by Theorem 1.40 both
A and B are projection bands of E. Now the identity

PAx − Tx = PAx − PATx = PA(x − Tx) = 0

shows that T = PA holds. Thus, T is an order projection, and the proof is
finished.

A positive projection need not be an order projection. For instance,
consider the operator T : L1[0, 1] → L1[0, 1] defined by

T (f) =
[∫ 1

0
f(x) dx

]
· 1 ,

where 1 denotes the constant function one. Clearly, 0 ≤ T = T 2 holds, and
its is not difficult to see that T is not an order projection.

The basic properties of order projections are summarized in the next
theorem.

Theorem 1.45. If A and B are projection bands in a Riesz space E, then
Ad, A ∩ B, and A + B are likewise projection bands. Moreover, we have:

(1) PAd = I − PA.

(2) PA∩B = PAPB = PBPA.

(3) PA+B = PA + PB − PAPB.

Proof. (1) From E = A ⊕ Ad it follows that Add = A holds (see Theo-
rem 1.40), and so Ad is a projection band. The identity PAd = I − PA

should be obvious.

(2) To see that A ∩ B is a projection band note first that the identity
B ∩ [0, x] = [0, PBx] implies A ∩ B ∩ [0, x] = A ∩ [0, PBx] for each x ∈ E+.
Consequently,

PAPBx = sup A ∩ [0, PBx] = supA ∩ B ∩ [0, x]

holds for each x ∈ E+, which (by Theorem 1.41) shows that A ∩ B is a
projection band and that PAPB = PA∩B holds. Similarly, PBPA = PA∩B.
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(3) Assume at the beginning that the two projection bands A and B
satisfy A ⊥ B. Let x ∈ E+. If 0 ≤ a + b ∈ A + B satisfies a + b ≤ x, then
clearly a ∈ A ∩ [0, x] and b ∈ B ∩ [0, x], and so a + b ≤ PAx + PBx ∈ A + B
holds. This shows that

sup(A + B) ∩ [0, x] = PAx + PBx ∈ A + B ,

and hence by Theorem 1.41 the ideal A + B is a projection band. Also,
PA+B = PA + PB holds.

For the general case observe that A + B = (A ∩ Bd) ⊕ B. Now using
the preceding case, we get

PA+B = P(A∩Bd)⊕B = PA∩Bd + PB = PAPBd + PB

= PA(I − PB) + PB = PA − PAPB + PB

= PA + PB − PA∩B ,

and the proof is finished.

An immediate consequence of statement (2) of the preceding theorem is
that two arbitrary order projections mutually commute.

A useful comparison property of order projections is described next.

Theorem 1.46. If A and B are projection bands in a Riesz space, then the
following statements are equivalent.

(1) A ⊆ B.

(2) PAPB = PBPA = PA.

(3) PA ≤ PB.

Proof. (1) =⇒ (2) Let A ⊆ B. Then from Theorem 1.45 it follows that

PAPB = PBPA = PA∩B = PA .

(2) =⇒ (3) For each 0 ≤ x we have PAx = PBPAx ≤ PBx, and so
PA ≤ PB holds.

(3) =⇒ (1) If 0 ≤ x ∈ A, then it follows from 0 ≤ x = PAx ≤ PBx ∈ B
that x ∈ B. Therefore, A ⊆ B holds, as required.

A vector x in a Riesz space E is said to be a projection vector whenever
the principal band Bx generated by x (i.e., Bx =

{
y ∈ E : |y| ∧ n|x| ↑ |y|

}
)

is a projection band. If every vector in a Riesz space is a projection vector,
then the Riesz space is said to have the principal projection property.
For a projection vector x we shall write Px for the order projection onto the
band Bx.
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Theorem 1.47. A vector x in a Riesz space is a projection vector if and
only if sup

{
y ∧ n|x| : n ∈ N

}
exists for each y ≥ 0. In this case

Px(y) = sup
{
y ∧ n|x| : n ∈ N

}
holds for all y ≥ 0.

Proof. Let y ≥ 0. We claim that the sets Bx∩ [0, y] and
{
y∧n|x| : n ∈ N

}
have the same upper bounds. To see this, note first that{

y ∧ n|x| : n ∈ N
}
⊆ Bx ∩ [0, y]

holds. Now let y∧n|x| ≤ u for all n. If z ∈ Bx∩ [0, y], then by Theorem 1.38
we have z ∧ n|x| ↑ z. In view of z ∧ n|x| ≤ y ∧ n|x| ≤ u, we see that z ≤ u,
and so the two sets have the same upper bounds. Now to finish the proof
invoke Theorems 1.41 and 1.43.

From the preceding theorem it follows immediately that in a Dedekind
σ-complete Riesz space every principal band is a projection band. Ifx,y≥0
are projection vectors in a Riesz space, then note that the formulas of The-
orem 1.45 take the form

Px∧y = PxPy = PyPx and Px+y = Px + Py − Px∧y .

A vector e > 0 in a Riesz space E is said to be a weak order unit
whenever the band generated by e satisfies Be = E (or, equivalently, when-
ever for each x ∈ E+ we have x ∧ ne ↑ x). Clearly, every vector 0 < x ∈ E
is a weak order unit in the band it generates. Also, note that a vector e > 0
in an Archimedean Riesz space is a weak order unit if and only if x ⊥ e
implies x = 0.

Projection vectors satisfy the following useful properties.

Theorem 1.48. In a Riesz space E the following statements hold:

(1) If u, v, and w are projection vectors satisfying 0 ≤ w ≤ v ≤ u, then
for each x ∈ E we have (Pu − Pv)x ⊥ (Pv − Pw)x.

(2) If 0 ≤ uα ↑ u holds in E with u and all the uα projection vectors,
then Puα(x) ↑ Pu(x) holds for each x ∈ E+.

Proof. (1) By Theorem 1.46 we have Pw ≤ Pv ≤ Pu and so if x ∈ E, then

0 ≤
∣∣(Pu − Pv)x

∣∣ ∧ ∣∣(Pv − Pw)x
∣∣

≤ (Pu − Pv)|x| ∧ (Pv − Pw)|x|
≤
[
Pu|x| − Pv(Pu|x|)

]
∧ Pv(Pu|x|) = 0 .

(2) Let x ∈ E+. Clearly, Puα(x) ↑≤ Pu(x). Thus, Pu(x) is an upper
bound for the net {Puα(x)}, and we claim it is the least upper bound.
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To see this, assume Puα(x) ≤ y for all α. Hence, x ∧ nuα ≤ y holds for
all α and n. Consequently, uα ↑ u implies x∧nu ≤ y for all n, and therefore
Pu(x) = sup

{
x ∧ nu : n ∈ N

}
≤ y. Hence, Pu(x) is the least upper bound

of {Puα(x)}, and thus Puα(x) ↑ Pu(x).

Let e be a positive vector of a Riesz space E. A vector x ∈ E+ is said
to be a component of e whenever x ∧ (e − x) = 0. The collection of all
components of e will be denoted by Ce, i.e.,

Ce :=
{
x ∈ E+ : x ∧ (e − x) = 0

}
.

Clearly, x ∈ Ce implies e − x ∈ Ce. Also, PBe ∈ Ce for each projection
band B.

Under the partial ordering induced by E, the set of components Ce is
a Boolean algebra,2 consisting precisely of the extreme points of the order
interval [0, e]. The details follow.

Theorem 1.49. For a positive vector e in a Riesz space E we have:

(1) If x, y ∈ Ce and x ≤ y holds, then y − x ∈ Ce.
(2) If x1, x2, y1, y2 ∈ Ce satisfy the inequalities x1 ≤ x2 ≤ y1 ≤ y2,

then x2 −x1 ⊥ y2 − y1.
(3) If x, y ∈ Ce, then x∨ y and x∧ y both belong to Ce (and so Ce is a

Boolean algebra with smallest element 0 and largest element e).
(4) If E is Dedekind complete, then for every non-empty subset C of

Ce the elements sup C and inf C both belong to Ce (and so in this
case Ce is a Dedekind complete Boolean algebra).

(5) The set of components Ce of e is precisely the set of all extreme
points of the convex set [0, e]. 3

Proof. (1) It follows immediately from the inequalities

0 ≤ (y − x) ∧
[
e − (y − x)

]
= (y − x) ∧

[
(e − y) + x

]
≤ (y − x) ∧ (e − y) + (y − x) ∧ x

≤ y ∧ (e − y) + (e − x) ∧ x = 0 + 0 = 0 .

(2) Note that 0 ≤ (x2 − x1) ∧ (y2 − y1) ≤ y1 ∧ (e − y1) = 0.

2Recall that a Boolean algebra B is a distributive lattice with smallest and
largest elements that is complemented. That is, B is a partially ordered set that
is a distributive lattice with a smallest element 0 and a largest element e such
that for each a ∈ B there exists a (necessarily unique) element a′ ∈ B (called the
complement of a) satisfying a ∧ a′ = 0 and a ∨ a′ = e. A Boolean algebra B is
Dedekind complete if every nonempty subset of B has a supremum.

3Recall that a vector u in a convex set C is said to be an extreme point of C
if it follows from u = λv + (1−λ)w with v, w ∈ C and 0 < λ < 1 that v = w = u.
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(3) Let x, y ∈ Ce. Then, using the distributive laws, we see that

(x ∨ y) ∧ (e − x ∨ y) = (x ∨ y) ∧
[
(e − x) ∧ (e − y)

]
=
[
x ∧ (e − x) ∧ (e − y)

]
∨
[
y ∧ (e − x) ∧ (e − y)

]
= 0 ∨ 0 = 0 ,

and

(x ∧ y) ∧ (e − x ∧ y) = (x ∧ y) ∧
[
(e − x) ∨ (e − y)

]
=
[
x ∧ y ∧ (e − x)

]
∨
[
x ∧ y ∧ (e − y)

]
= 0 ∨ 0 = 0 .

(4) Now assume that E is Dedekind complete and let C be a nonempty
set of components of e. Put u = sup C and v = inf C. Then, using the
infinite distributive laws, we get

0 ≤ u ∧ (e − u) = [supC] ∧ (e − u) = sup
{
c ∧ (e − u) : c ∈ C

}
≤ sup

{
c ∧ (e − c) : c ∈ C

}
= 0 .

Similarly, we have

0 ≤ v ∧ (e − v) = = v ∧
(
e − inf C

)
= v ∧ sup

{
e − c : c ∈ C

}
= sup

{
v ∧ (e − c) : c ∈ C

}
≤ sup

{
c ∧ (e − c) : c ∈ C

}
= 0 .

(5) Assume first that an element x ∈ [0, e] is an extreme point of [0, e].
Let y = x ∧ (e − x) ≥ 0. We must show that y = 0. Clearly, 0 ≤ x − y ≤ e
and 0 ≤ x+y ≤ e, and from the convex combination x = 1

2(x−y)+ 1
2(x+y)

we get x − y = x. So y = 0, as desired.
For the converse, assume that v ∈ Ce and let v = λx + (1 − λ)y, where

x, y ∈ [0, e] and 0 < λ < 1. From v∧(e−v) = 0, it follows that x∧(e−v) = 0,
and so from part (1) of Lemma 1.4 we get

x = x ∧ e = x ∧ [(v + (e − v)] ≤ x ∧ v + x ∧ (e − v) = x ∧ v ≤ v .

Similarly, y ≤ v. Now if either x < v or y < v were true, then

v = λx + (1 − λ)y < λv + (1 − λ)v = v

also would be true, which is impossible. Hence x = y = v holds, and so v
is an extreme point of [0, e]. This completes the proof of the theorem.

When E has the principal projection property, Y. A. Abramovich [1]
has described the lattice operations of Lb(E, F ) in terms of components as
follows.
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Theorem 1.50 (Abramovich). If a Riesz space E has the principal projec-
tion property and F is a Dedekind complete Riesz space, then for each pair
S, T ∈ Lb(E, F ) and each x ∈ E+ we have:[

S ∨ T
]
(x) = sup

{
S(y) + T (z) : y ∧ z = 0 and y + z = x

}
.[

S ∧ T
]
(x) = inf

{
S(y) + T (z) : y ∧ z = 0 and y + z = x

}
.

Proof. Notice that the first formula follows from the second by using the
identity S∨T = −

[
(−S)∧ (−T )

]
. Also, if the second formula is true for the

special case S ∧ T = 0, then it is true in general. This claim follows easily
from the identity (S −S ∧ T ) ∧ (T −S ∧ T ) = 0. To complete the proof,
assume that S ∧ T = 0 in Lb(E, F ). Fix x ∈ L+ and put

u = inf
{
S(y) + T (x− y) : y ∧ (x− y) = 0

}
.

We must show that u = 0.
To this end, fix any 0 ≤ y ∈ E+ satisfy 0 ≤ y ≤ x. Let P denote

the order projection of E onto the band generated by (2y−x)+ and put
z = P (x). From x ≤ 2y + (x− 2y)+ and (x− 2y)+ ∧ (2y−x)+ = 0, it
follows that P (x) ≤ 2P (y) + P

(
(x− 2y)+

)
= 2P (y) ≤ 2y. Therefore,

z ≤ 2y . (�)

Also, from (2y−x)+ ≤ (2x−x)+ = x we see that

2y−x ≤ (2y−x)+ = P
(
(2y−x)+

)
≤ P (x) = z ,

and consequently
x− z ≤ 2(x− y) . (��)

Now combining (�) and (��), we get

0 ≤ u ≤ S(z) + T (x− z) ≤ 2
[
S(y) + T (x− y)

]
, (� � �)

for all elements y ∈ E+ with 0 ≤ y ≤ x. Taking into consideration that
(according to Theorem 1.18) we have inf

{
S(y)+T (x− y) : 0 ≤ y ≤ x

}
= 0,

it follows from (� � �) that u = 0, and the proof is finished.

It should be noted that Theorem 1.50 is false without assuming that E
has the principal projection property. For instance, let E = C[0, 1], F = R,
and let S, T : E → F be defined by S(f) = f(0) and T (f) = f(1). Then
S ∧ T = 0 holds, while

inf
{
S(f) + T (g) : f ∧ g = 0 and f + g = 1

}
= inf

{
S(f) + T (1 − f) : f = 0 or f = 1

}
= 1 .

When E has the principal projection property, the lattice operations of
Lb(E, F ) also can be expressed in terms of directed sets involving compo-
nents as follows.
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Theorem 1.51. Assume that E has the principal projection property and
that F is Dedekind complete. Then for all S, T ∈ Lb(E, F ) and x ∈ E+ we
have:

(1)
{ n∑

i=1

S(xi) ∨ T (xi) : xi ∧ xj = 0 for i �= j and
n∑

i=1

xi = x
}
↑ [S ∨ T ](x).

(2)
{ n∑

i=1

S(xi) ∧ T (xi) : xi ∧ xj = 0 for i �= j and
n∑

i=1

xi = x
}
↓ [S ∧ T ](x).

(3)
{ n∑

i=1

|T (xi)| : xi ∧ xj = 0 for i �= j and
n∑

i=1

xi = x
}
↑ |T |(x).

Proof. Since (2) and (3) follow from (1) by using the usual lattice identities
S∧T = −[(−S)∨(−T )] and |T | = T ∨(−T ), we prove only the first formula.
Put

D =
{ n∑

i=1

S(xi) ∨ T (xi) : xi ∧ xj = 0 for i �= j and
n∑

i=1

xi = x
}

,

where x ∈ E+ is fixed, and note that supD ≤ [S∨T ](x) holds in F . On the
other hand, if y, z ∈ E+ satisfy y ∧ z = 0 and y + z = x, then the relation

S(y) + T (z) ≤ S(y) ∨ T (y) + S(z) ∨ T (z) ∈ D ,

in conjunction with Theorem 1.50, shows that supD = [S ∨ T ](x) holds.
Therefore, what remains to be shown is that D is directed upward.

To this end, let {x1, . . . , xn} and {y1, . . . , ym} be two subsets of E+ each
of which is pairwise disjoint such that

∑n
i=1 xi =

∑m
j=1 yj = x. Then note

that the finite set {xi ∧ yj : i = 1, . . . , n; j = 1, . . . , m} is pairwise disjoint
and

n∑
i=1

m∑
j=1

xi ∧ yj =
n∑

i=1

xi ∧
[ m∑

j=1

yj

]
=

n∑
i=1

xi ∧ x =
n∑

i=1

xi = x .

In addition, we have

n∑
i=1

S(xi) ∨ T (xi) =
n∑

i=1

S
(
xi ∧

n∑
j=1

yj

)
∨ T
(
xi ∧

m∑
j=1

yj

)

=
n∑

i=1

[ n∑
j=1

S(xi ∧ yj)
]
∨
[ m∑

j=1

T (xi ∧ yj)
]

≤
n∑

i=1

m∑
j=1

S(xi ∧ yj) ∨ T (xi ∧ yj) ,
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and, similarly,
m∑

j=1

S(yj) ∨ T (yj) ≤
n∑

i=1

m∑
j=1

S(xi ∧ yj) ∨ T (xi ∧ yj) .

Therefore, D ↑ [S ∨ T ](x) holds.

The final result of this section deals with retracts of Riesz spaces. Let
us say that a Riesz subspace G of a Riesz space E is a retract (or that E is
retractable on G) whenever there exists a positive projection P : E → E
whose range is G.

Theorem 1.52. For a Riesz subspace G of a Riesz space E we have the
following:

(1) If G is a retract of E and E is Dedekind complete, then G is a
Dedekind complete Riesz space in its own right.

(2) If G is Dedekind complete in its own right and G majorizes E, then
G is a retract of E.

Proof. (1) Let P : E → E be a positive projection whose range is the Riesz
subspace G, and let 0 ≤ xα ↑≤ x in G. Then there exists some y ∈ E with
0 ≤ xα ↑ y ≤ x in E, and so 0 ≤ xα = Pxα ≤ Py holds in G for each α. On
the other hand, if for some z ∈ G we have 0 ≤ xα ≤ z for all α, then y ≤ z,
and hence Py ≤ Pz = z. In other words, 0 ≤ xα ↑ Py holds in G, which
proves that G is a Dedekind complete Riesz space.

(2) Apply Theorem 1.32 to the identity operator I : G → G.

Exercises

1. For two nets {xα} and {yβ} in a Riesz space satisfying xα−→o x and
yβ−→o y establish the following properties.
(a) If xα−→o u, then u = x (and so the order limits whenever they exist

are uniquely determined).
(b) λxα + µyβ−→o λx + µy for all λ, µ ∈ R.
(c) |xα|−→o |x|.
(d) xα ∨ yβ−→o x ∨ y and xα ∧ yβ−→o x ∧ y.
(e) (xα − yβ)+−→o (x − y)+.
(f) If xα ≤ z holds for all α � α0, then x ≤ z.

2. Show that the intersection of two order dense ideals is also an order dense
ideal.

3. Let 0 ≤ y ≤ x ≤ e hold in a Riesz space. If y is a component of x and x
is a component of e, then show that y is a component of e.
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4. If 1 denotes the constant function one on [0, 1], then compute C1 in:

(a) C[0, 1] ; (b) L1[0, 1] ; (c) �∞[0, 1] .

5. Show that in an Archimedean Riesz space a vector e > 0 is a weak order
unit if and only if x ⊥ e implies x = 0.

6. If E has the principal projection property, then show that Px+(x) = x+

holds for all x ∈ E.

7. Let E be a Riesz space satisfying the principal projection property, let
0 ≤ y ≤ x, and let ε ∈ R. If P denotes the order projection onto the band
generated by (y − εx)+, then show that εP (x) ≤ y holds.

8. If A and B are two projection bands in a Riesz space E, then show that:
(a) PA∩B(x) = PA(x) ∧ PB(x) holds for all x ∈ E+.
(b) PA+B(x) = PA(x) ∨ PB(x) holds for all x ∈ E+.
(c) PA+B = PA + PB holds if and only if A ⊥ B.

9. If P and Q are order projections on a Riesz space E, then show that

P (x) ∧ Q(y) = PQ(x ∧ y)

for all x, y ∈ E+.

10. For an order projection P on a Riesz space E establish the following:
(a) |Px| = P (|x|) holds for all x ∈ E.
(b) If D is a nonempty subset of E for which supD exists in E, then

supP (D) exists in E and supP (D) = P (supD).

11. Let E and F be two Riesz spaces with F Dedekind complete. Show that:
(a) If P is an order projection on E and Q is an order projection on F ,

then the operator (transformer) T �→ QTP is an order projection
on Lb(E,F ).

(b) If P1, P2 are order projections on E and Q1, Q2 are order projections
on F , then

(Q1TP1) ∧ (Q2SP2) = Q1Q2(T ∧ S)P1P2

holds in Lb(E,F ) for all S, T ∈ L+
b (E,F ).

12. Let E and F be two Riesz spaces with F Dedekind complete. Show that:
(a) If P is an order projection on E, then |TP | = |T |P holds for all

T ∈ Lb(E,F ).
(b) If Q is an order projection on F , then |QT | = Q|T | holds for all

T ∈ Lb(E,F ).

1.4. Order Continuous Operators

In this section the basic properties of order continuous operators will be
studied. Our discussion starts with their definition introduced by T. Oga-
sawara around 1940; see the work of M. Nakamura [146]. Recall that a
net {xα} in a Riesz space is order convergent to some vector x, denoted
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xα−→o x, whenever there exists another net {yα} with the same index set
satisfying |xα − x| ≤ yα ↓ 0.

Definition 1.53. An operator T : E → F between two Riesz spaces is said
to be:

(a) Order continuous, if xα−→o 0 in E implies Txα−→o 0 in F .
(b) σ-order continuous, if xn−→o 0 in E implies Txn−→o 0 in F .

It is useful to note that a positive operator T : E → F between two
Riesz spaces is order continuous if and only if xα ↓ 0 in E implies Txα ↓ 0
in F (and also if and only if 0 ≤ xα ↑ x in E implies Txα ↑ Tx in F .) In
the terminology of directed sets a positive operator T : E → F is, of course,
order continuous if and only if D ↓ 0 in E implies T (D) ↓ 0 in F . Similar
observations hold true for positive σ-order continuous operators.

Lemma 1.54. Every order continuous operator is order bounded.

Proof. Let T : E → F be an order continuous operator and let x ∈ E+. If
we consider the order interval [0, x] as a net {xα}, where xα = α for each
α ∈ [0, x], then xα ↓ 0. So, by the order continuity of T , there exists a net
{yα} of F with the same index [0, x] such that |Txα| ≤ yα ↓ 0. Consequently,
if α ∈ [0, x], then we have |Tα| = |Txα| ≤ yα ≤ yx, and this shows that
T [0, x] is an order bounded subset of F .

A σ-order continuous operator need not be order continuous, as the next
example shows.

Example 1.55. Let E be the vector space of all Lebesgue integrable real-
valued functions defined on [0, 1]. Note that two functions that differ at
one point are considered to be different. Under the pointwise ordering (i.e.,
f ≥ g means f(x) ≥ g(x) for all x ∈ [0, 1]), E is a Riesz space—in fact, it is
a function space. Also, note that fα ↑ f holds in E if and only if fα(x) ↑ f(x)
holds in R for all x ∈ [0, 1].

Now define the operator T : E → R by

T (f) =
∫ 1

0
f(x) dx .

Clearly, T is a positive operator, and from the Lebesgue dominated conver-
gence theorem it easily follows that T is σ-order continuous. However, T is
not order continuous.

To see this, note first that if F denotes the collection of all finite subsets
of [0, 1], then the net {χα : α ∈ F} ⊆ E (where χα is the characteristic
function of α) satisfies χα ↑ 1 (= the constant function one). On the other
hand, observe that T (χα) = 0 �→ T (1) = 1.



1.4. Order Continuous Operators 47

The order continuous operators have a number of nice characterizations.

Theorem 1.56. For an order bounded operator T : E → F between two
Riesz spaces with F Dedekind complete, the following statements are equiv-
alent.

(1) T is order continuous.

(2) If xα ↓ 0 holds in E, then Txα−→o 0 holds in F .

(3) If xα ↓ 0 holds in E, then inf
{
|Txα|

}
= 0 in F .

(4) T+ and T− are both order continuous.

(5) |T | is order continuous.

Proof. (1) =⇒ (2) and (2) =⇒ (3) are obvious.

(3) =⇒ (4) It is enough to show that T+ is order continuous. To this
end, let xα ↓ 0 in E. Let T+xα ↓ z ≥ 0 in F . We have to show that z = 0.
Fix some index β and put x = xβ .

Now for each 0 ≤ y ≤ x and each α � β we have

0 ≤ y − y ∧ xα = y ∧ x − y ∧ xα ≤ x − xα ,

and consequently

T (y) − T (y ∧ xα) = T (y − y ∧ xα) ≤ T+(x − xα) = T+x − T+xα ,

from which it follows that

0 ≤ z ≤ T+xα ≤ T+x +
∣∣T (y ∧ xα)

∣∣− Ty (�)

holds for all α � β and all 0 ≤ y ≤ x. Now since for each fixed vector
0 ≤ y ≤ x we have y ∧ xα ↓

α�β
0, it then follows from our hypothesis that

infα�β

{
|T (y ∧xα)|

}
= 0, and hence from (�) we see that 0 ≤ z ≤ T+x−Ty

holds for all 0 ≤ y ≤ x. In view of T+x = sup
{
Ty : 0 ≤ y ≤ x

}
, the latter

inequality yields z = 0, as desired.

(4) =⇒ (5) The implication follows from the identity |T | = T+ + T−.

(5) =⇒ (1) The implication follows easily from the lattice inequality
|Tx| ≤ |T |(|x|).

The reader can formulate by himself the analogue of Theorem 1.56 for
σ-order continuous operators.

The collection of all order continuous operators of Lb(E, F ) will be de-
noted by Ln(E, F ); the subscript n is justified by the fact that the order
continuous operators are also known as normal operators. That is,

Ln(E, F ) :=
{
T ∈ Lb(E, F ) : T is order continuous

}
.
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Similarly, Lc(E, F ) will denote the collection of all order bounded operators
from E to F that are σ-order continuous. That is,

Lc(E, F ) :=
{
T ∈ Lb(E, F ) : T is σ-order continuous

}
.

Clearly, Ln(E, F ) and Lc(E, F ) are both vector subspaces of Lb(E, F ),
and moreover Ln(E, F ) ⊆ Lc(E, F ) holds. When F is Dedekind complete
T. Ogasawara [156] has shown that both Ln(E, F ) and Lc(E, F ) are bands
of Lb(E, F ). The details follow.

Theorem 1.57 (Ogasawara). If E and F are Riesz spaces with F Dedekind
complete, then Ln(E, F ) and Lc(E, F ) are both bands of Lb(E, F ).

Proof. We shall establish that Ln(E, F ) is a band of Lb(E, F ). That
Lc(E, F ) is a band can be proven in a similar manner.

Note first that if |S| ≤ |T | holds in Lb(E, F ) with T ∈ Ln(E, F ), then
from Theorem 1.56 it follows that S ∈ Ln(E, F ). That is, Ln(E, F ) is an
ideal of Lb(E, F ).

To see that the ideal Ln(E, F ) is a band, let 0 ≤ Tλ ↑ T in Lb(E, F )
with {Tλ} ⊆ Ln(E, F ), and let 0 ≤ xα ↑ x in E. Then for each fixed index
λ we have

0 ≤ T (x − xα) ≤ (T − Tλ)(x) + Tλ(x − xα) ,

and x − xα ↓ 0 , in conjunction with Tλ ∈ Ln(E, F ), implies

0 ≤ inf
α

{
T (x − xα)

}
≤ (T − Tλ)(x)

for all λ. From T − Tλ ↓ 0 we see that infα
{
T (x − xα)

}
= 0, and hence

T (xα) ↑ T (x). Thus, T ∈ Ln(E, F ), and the proof is finished.

Now consider two Riesz spaces E and F with F Dedekind complete. The
band of all operators in Lb(E, F ) that are disjoint from Lc(E, F ) will be
denoted by Ls(E, F ), i.e., Ls(E, F ) := Ld

c (E, F ), and its nonzero members
will be referred to as singular operators. Since Lb(E, F ) is a Dedekind
complete Riesz space (see Theorem 1.18), it follows from Theorem 1.42 that
Lc(E, F ) is a projection band, and so

Lb(E, F ) = Lc(E, F ) ⊕ Ls(E, F )

holds. In particular, each operator T ∈ Lb(E, F ) has a unique decomposi-
tion T = Tc + Ts, where Tc ∈ Lc(E, F ) and Ts ∈ Ls(E, F ). The operator Tc

is called the σ-order continuous component of T , and Ts is called the
singular component of T . Similarly,

Lb(E, F ) = Ln(E, F ) ⊕ Lσ(E, F ) ,
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where Lσ(E, F ) := Ld
n(E, F ). Thus, every operator T ∈ Lb(E, F ) also has a

unique decomposition T = Tn+Tσ, where Tn ∈ Ln(E, F ) and Tσ ∈ Lσ(E, F ).
The operator Tn is called the order continuous component of T .

The next examples shows that Lc(E, F ) = {0} is possible.

Example 1.58. For each 1 < p < ∞ we have

Lc(C[0, 1], Lp[0, 1]) = {0} .

That is, the zero operator is the only σ-order continuous positive operator
from C[0, 1] to Lp[0, 1].

To establish this, we need to show first that the only positive σ-order
continuous operator from C[0, 1] to R is the zero operator. To this end, let
φ : C[0, 1] → R be a positive σ-order continuous operator.

Let {r1, r2, . . .} be an enumeration of all rational numbers of [0, 1]. For
each pair m, n ∈ N choose some xm,n ∈ C[0, 1] such that:

(a) 0 ≤ xm,n(t) ≤ 1 for all t ∈ [0, 1].

(b) xm,n(rn) = 1.

(c) xm,n(t) = 0 for all t ∈ [0, 1] with |t − rn| > 1
2n+m .

Put ym,n =
∨n

i=1 xm,i, and note that for each fixed m we have ym,n ↑n in
C[0, 1]. In view of ym,n(rn) = 1, it follows that ym,n ↑n 1 (= the constant
function one). Since φ is a positive σ-order continuous operator, we see that
φ(ym,n) ↑n φ(1) holds in R for each fixed m.

Put ε > 0. For each m choose some nm ∈ N with φ(1)−φ(ym,nm) < 1
2m ε,

and then put zn =
∧n

m=1 ym,nm . Clearly, zn ↓ holds in C[0, 1], and since
each set

{
t ∈ [0, 1] : ym,n(t) > 0

}
has Lebesgue measure less that 1

2m , it
follows that zn ↓ 0. Now the inequalities

0 ≤ φ(1) − φ(zn) = φ(1 − zn) = φ
( n∨

m=1

(
1 − ym,nm

))

≤ φ
( n∑

m=1

(
1 − ym,nm

))
=

n∑
m=1

φ
(
1 − ym,nm

)
< ε ,

in conjunction with φ(zn) ↓ 0, imply 0 ≤ φ(1) ≤ ε for all ε > 0. Therefore,
φ(1) = 0, and from this we see that φ = 0.

Now let T : C[0, 1] → Lp[0, 1] be a positive σ-order continuous operator.
Then for each fixed 0 ≤ g ∈ Lq[0, 1], where 1

p + 1
q = 1, the positive operator

ψ : C[0, 1] → R defined by

ψ(f) =
∫ 1

0
g(t)
[
Tf(t)] dt
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is σ-order continuous. Hence, by the previous case
∫ 1
0 g(t)[Tf(t)] dt = 0 for

all g ∈ Lq[0, 1] and all f ∈ C[0, 1]. The latter easily implies T = 0, as
claimed.

If x and y are vectors in a Riesz space and ε is any real number, then
from the identity x − y = (1 − ε)x + (εx − y) we see that

x − y ≤ (1 − ε)x + (εx − y)+ .

This simple inequality is useful in many contexts and was introduced by
T. Andô [125, Note XIV]. In the sequel it will be referred to as Andô’s
inequality.

The σ-order continuous and order continuous components of a positive
operator are described by formulas as follows.

Theorem 1.59. Let E and F be two Riesz spaces with F Dedekind complete.
If T : E → F is a positive operator, then

(1) Tc(x) = inf
{
sup T (xn) : 0 ≤ xn ↑ x

}
, and

(2) Tn(x) = inf
{
supT (xα) : 0 ≤ xα ↑ x

}
hold for each x ∈ E+.4

Proof. We prove the formula for Tn and leave the identical arguments for
Tc to the reader.

For each positive operator S : E → F define S� : E+ → F+ by

S�(x) = inf
{
sup S(xα) : 0 ≤ xα ↑ x

}
, x ∈ E+ .

Clearly, 0 ≤ S�(x) ≤ S(x) holds for all x ∈ E+, and S�(x) = S(x) whenever
S ∈ Ln(E, F ). Moreover, it is not difficult to see that S� is additive on E+,
and hence (by Theorem 1.10), S� extends to a positive operator from E to
F . On the other hand, it is easy to see that S �→ S�, from L+

b (E, F ) to
L+

b (E, F ), is likewise additive, i.e., (S1 + S2)� = S�
1 + S�

2 holds, and hence
S �→ S� defines a positive operator from Lb(E, F ) to Lb(E, F ). From the
inequality 0 ≤ S� ≤ S we also see that S �→ S� is order continuous, i.e.,
Sα ↓ 0 in Lb(E, F ) implies S�

α ↓ 0.

4These formulas have an interesting history. When F = R , the formula for
Tc is due to W. A. J. Luxemburg and A. C. Zaanen [130, Note VI, Theorem 20.4,
p. 663], and for the same case, the formula for Tn is due to W. A. J. Luxem-
burg [125]. When Ln(F, R) separates the points of F , the formulas were established
by C. D. Aliprantis [6]. In 1975 A. R. Schep announced the validity of the formulas
in the general setting and later published his proof in [176]. An elementary proof
for the Tc formula also was obtained by P. van Eldik in [59]. The proof presented
here is due to the authors [12].
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Now let T : E → F be a fixed positive operator. It is enough to show
that T � is order continuous. If this is done, then the inequality T � ≤ T
implies T � = (T �)n ≤ Tn, and since Tn ≤ T � is trivially true, we see that
Tn = T �. To this end, let 0 ≤ yλ ↑ y in E. We must show that T �(y−yλ) ↓ 0.

Fix 0 < ε < 1, and let Tλ denote the operator defined in Theorem 1.28
that agrees with T on the ideal generated by (εy − yλ)+ and vanishes on
(εy − yλ)−. Clearly, T ≥ Tλ ↓≥ 0, and Tλ(yλ − εy)+ = 0 holds for all λ. Let
Tλ ↓ R in Lb(E, F ). From 0 ≤ (yλ − εy)+ ↑ (1 − ε)y and R(yλ − εy)+ = 0
for each λ, we see that R�(y) = 0. From Andô’s inequality

0 ≤ y − yλ ≤ (1 − ε) + (ε − yλ)+ ,

it follows that

0 ≤ T �(y − yλ) ≤ (1 − ε)T �(y) + T �(εy − yλ)+ . (†)

Now since 0 ≤ x ≤ (εy − yλ)+ implies T (x) = Tλ(x), we see that

T �(εy − yλ)+ = inf
{
sup T (xα) : 0 ≤ xα ↑ (εy − yλ)+

}
= inf

{
sup Tλ(xα) : 0 ≤ xα ↑ (εy − yλ)+

}
= T �

λ (εy − yλ)+ ≤ T �
λ (y) ,

and so, substituting into (†), we obtain

0 ≤ T �(y − yλ) ≤ (1 − ε)T �(y) + T �
λ (y) . (††)

From Tλ ↓ R and the order continuity of S �→ S�, it follows that T �
λ ↓ R�.

In particular, T �
λ (y)↓ R�(y) = 0, and so from (††) we see that

0 ≤ inf
λ

{
T �(y − yλ)

}
≤ (1 − ε)T �(y)

holds for all 0 < ε < 1. Hence, T �(y − yλ) ↓ 0, as desired.

Consider an order bounded operator T : E → F between two Riesz
spaces with F Dedekind complete. Then the null ideal NT of T is de-
fined by

NT :=
{
x ∈ E : |T |(|x|) = 0

}
.

Note that NT is indeed an ideal of E. The disjoint complement of NT is
referred to as the carrier of T and is denoted by CT . That is,

CT := Nd
T =
{
x ∈ E : x ⊥ NT

}
.

Clearly, |T | is strictly positive on CT , i.e., 0 < x ∈ CT implies 0 < |T |(x).
When an order bounded operator is, in addition, order continuous, then

it is easy to see that its null ideal is a band. However, the converse is false.
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Example 1.60. Consider an infinite set X, and let X∞ = X ∪ {∞} be
the one-point compactification of X considered equipped with the discrete
topology. Thus, a function f : X → R belongs to C(X∞) if and only if there
exists some constant c (depending upon f) such that for each ε > 0 we have∣∣f(x) − c

∣∣ < ε for all but a finite number of x, in which case c = f(∞).
Now fix a countable subset {x1, x2, . . .} of X, and then define the oper-

ator T : C(X∞) → R by

T (f) = f(∞) +
∞∑

n=1

2−nf(xn) .

Clearly, T is a positive operator, and

NT =
{
f ∈ C(X∞) : f(xn) = 0 for n = 1, 2, . . .

}
.

Since fα ↑ f holds in C(X∞) if and only if fα(x) ↑ f(x) holds in R for all
x ∈ X (why?), it follows that NT is a band of C(X∞). On the other hand,
we claim that T is not order continuous.

To see this, consider the net {χα} ⊆ C(X∞), where α runs over the
collection of all finite subsets of X. Then 0 ≤ χα ↑ 1 holds in C(X∞), while
T (χα) �→ T (1). Also, it is interesting to observe that if X is countable, then
T is necessarily σ-order continuous!

In terms of null ideals the order and σ-order continuous operators are
characterized as follows. (Recall that an ideal A of a Riesz space is said to
be a σ-ideal whenever {xn} ⊆ A and 0 ≤ xn ↑ x imply x ∈ A.)

Theorem 1.61. For an order bounded operator T : E → F between two
Riesz spaces with F Dedekind complete we have the following.

(1) T is order continuous if and only if the null ideal NS is a band for
every operator S in the ideal AT generated by T is Lb(E, F ).

(2) T is σ-order continuous if and only if the null ideal NS is a σ-ideal
for each S ∈ AT .

Proof. We shall only prove (1) since the proof of (2) is similar. The “only
if” part follows immediately from Theorem 1.56. For the “if” part (in view
of Theorem 1.56) we can assume that T ≥ 0. Let 0 ≤ xα ↑ x in E, and let
0 ≤ Txα ↑ y ≤ Tx in F . We must show that y = Tx holds.

To this end, let 0 < ε < 1. For each α, let Tα be the operator given
by Theorem 1.28 that agrees with T on the ideal generated by (εx − xα)+

and vanishes on (εx − xα)−. Clearly, T ≥ Tα ↓≥ 0, and Tα(εx − xα)− = 0
for each α. Let Tα ↓ S ≥ 0 in Lb(E, F ), and note that S ∈ AT . Also,
S(εx − xα)− = 0 holds for each α, and so

{
(εx − xα)−

}
⊆ NS . On the
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other hand, 0 ≤ (εx − xα)− ↑ (1 − ε)x holds in E, and hence, since by our
hypothesis NS is a band, x ∈ NS . Therefore, Sx = 0. Now the relation

0 ≤ T (εx − xα)+ = Tα(εx − xα)+ ≤ Tα(x) ,

in conjunction with Andô’s inequality 0 ≤ x − xα ≤ (1 − ε)x + (εx − xα)+,
yields

0 ≤ Tx − y ≤ T (x − xα) ≤ (1 − ε)Tx + T (εx − xα)+ ≤ (1 − ε)Tx + Tα(x) .

Taking into consideration that Tα(x) ↓ S(x) = 0, the preceding inequality
yields 0 ≤ Tx − y ≤ (1 − ε)Tx for all 0 < ε < 1. Hence, y = Tx holds, as
required.

To illustrate the previous theorem, consider the operator T : C(X∞)→R
of Example 1.60 defined by

T (f) = f(∞) +
∞∑

n=1

2−nf(xn) .

As we have seen before, NT =
{
f ∈ C(X∞) : f(xn) = 0 for n = 1, 2, . . .

}
,

and this shows that NT is a band of C(X∞). On the other hand, if
S : C(X∞) → R is defined by

S(f) = f(∞) ,

then S is a positive operator satisfying 0 ≤ S ≤ T . Clearly, the null ideal of
S is given by NS =

{
f ∈ C(X∞) : f(∞) = 0

}
. Now note that the net {χα}

of all characteristic functions of the finite subsets of X satisfies {χα} ⊆ NS

and χα ↑ 1. Since 1 /∈ NS , we see that NS is not a band of C(X∞), in
accordance with part (1) of Theorem 1.61.

Consider two Riesz spaces E and F with F Dedekind complete. An
operator T ∈ Lb(E, F )is said to have zero carrier whenever CT = {0} (or,
equivalently, whenever NT is order dense in E). It is easy to check that the
zero operator is the only order continuous operator with zero carrier. On
the other hand, If T ∈ Lb(E, F ) has a zero carrier, then T ⊥ Ln(E, F ),
that is, T ∈ Lσ(E, F ). (To see this, write T = Tn + Tσ, and note that
|T | = |Tn| + |Tσ|; see Exercise 2 of Section 1.1. Therefore, NT ⊆ NTn holds,
and so by the order denseness of NT we see that NTn = E. That is, Tn = 0
and so T = Tσ ∈ Lσ(E, F ).) From |T + S| ≤ |T | + |S|, it follows that
NT ∩ NS ⊆ NT+S , and using the fact that the intersection of two order
dense ideals is an order dense ideal (why?), we see that the operators of
Lb(E, F ) with zero carriers form an ideal. The next theorem tells us that
this ideal is always order dense in Lσ(E, F ).

Theorem 1.62. Let E and F be two Riesz spaces with F Dedekind complete.
Then the ideal {

T ∈ Lb(E, F ) : CT = {0}
}
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is order dense in Lσ(E, F ).

Proof. We have mentioned before that the set
{
T ∈ Lb(E, F ) : CT = {0}

}
is an ideal that is included in Lσ(E, F ). For the order denseness assume
that 0 < T ∈ Lσ(E, F ).

Since T is not order continuous, there exists (by Theorem 1.61) an op-
erator 0 < S ≤ T such that NS is not a band. Denote by B the band
generated by NS . Let R be the operator determined by Theorem 1.28 such
that R = S on B and R = 0 on Bd. Clearly, NS ⊆ NR and 0 < R ≤ S.
On the other hand, since R = 0 holds on Bd = Nd

S = CS , we see that
NS ⊕ CS ⊆ NR, and this (in view of Theorem 1.36) shows that NR is order
dense in E. Thus, R has zero carrier. Now to complete the proof note that
0 < R ≤ T holds.

The preceding theorem shows that Lσ(E, F ) = {0} holds (or, equiva-
lently, Lb(E, F ) = Ln(E, F )) if and only if every nonzero operator from E
to F has a nonzero carrier. Thus, in view of Theorem 1.61 we see that the
following theorem of the authors [12] holds.

Theorem 1.63 (Aliprantis–Burkinshaw). For a pair of Riesz spaces E and
F with F Dedekind complete, the following statements are equivalent.

(1) Every order bounded operator from E to F is order continuous, i.e.,
Lb(E, F ) = Ln(E, F ).

(2) Every nonzero order bounded operator from E to F has a nonzero
carrier.

(3) The null ideal of every order bounded operator from E to F is a
band.

The next result tells us when a positive operator is order continuous on
a given ideal.

Theorem 1.64. Let T : E → F be a positive operator between two Riesz
spaces with F Dedekind complete, and let A be an ideal of E. Then the
operator T is order (resp. σ-order) continuous on A if and only if TA is an
order (resp. σ-order) continuous operator.

Proof. We establish the result for the “order continuous” case; the “σ-order
continuous” case can be proven in a similar fashion. Recall that for each
x ∈ E+ the operator TA is given (according to Theorem 1.28) by

TA(x) = sup
{
T (y) : y ∈ A and 0 ≤ y ≤ x

}
.

Since TA = T holds on A, it should be obvious that if TA is an order
continuous operator, then T must be order continuous on A. For the con-
verse, assume that T is order continuous on A, and let 0 ≤ xα ↑ x in E. Let
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TA(xα) ↑ z ≤ TA(x). Now fix y ∈ A∩ [0, x]. Then 0 ≤ y ∧ xα ↑ y holds in A,
and so T (y ∧ xα) ↑ T (y) holds in F . From

T (y ∧ xα) = TA(y ∧ xα) ≤ z ≤ TA(x) ,

it follows that T (y) ≤ z ≤ TA(x) holds for all y ∈ A ∩ [0, x]. Hence,

TA(x) = supT (A ∩ [0, x]) ≤ z ≤ TA(x) ,

and so z = TA(x), proving that TA is an order continuous operator.

The final result of this section is an extension theorem for positive order
continuous operators and is due to A. I. Veksler [188].

Theorem 1.65 (Veksler). Let G be an order dense majorizing Riesz sub-
space of a Riesz space E, and let F be Dedekind complete. If T : G → F is
a positive order continuous operator, then the formula

T (x) = sup
{
T (y) : y ∈ G and 0 ≤ y ≤ x

}
, x ∈ E+,

defines a unique order continuous linear extension of T to all of E.

Proof. Since G majorizes E, it is easy to see that

S(x) = sup
{
T (y) : y ∈ G and 0 ≤ y ≤ x

}
exists in F for each x ∈ E+. Also, note that if {xα} ⊆ G satisfies 0 ≤ xα ↑ x,
then T (xα) ↑ S(x) holds. Indeed, if 0 ≤ y ∈ G satisfies 0 ≤ y ≤ x, then
0 ≤ xα ∧ y ↑ y holds in G, and so by the order continuity of T : G → F we
see that

T (y) = sup
{
T (xα ∧ y)

}
≤ sup

{
T (xα)

}
≤ S(x) .

This easily implies that T (xα) ↑ S(x).
Now let x, y ∈ E+. Pick two nets {xα} and {yβ} of G+ with 0 ≤ xα ↑ x

and 0 ≤ yβ ↑ y (see Theorem 1.34). Then 0 ≤ xα + yβ ↑ x + y holds, and so
by the above discussion

T (xα) + T (yβ) = T (xα + yβ) ↑ S(x + y) .

From T (xα) ↑ S(x) and T (yβ) ↑ S(y), we get S(x + y) = S(x) + S(y). That
is, S : E+ → F+ is additive, and thus by Theorem 1.10 it extends uniquely
to a positive operator from E to F . Clearly, S is an extension of T .

Finally, it remains to be shown that S is order continuous. To this end,
let 0 ≤ xα ↑ x in E. Put

D =
{
y ∈ G+ : there exists some α with y ≤ xα

}
,

and note that supT (D) ≤ sup
{
S(xα)

}
≤ S(x) holds in F . Since G is order

dense in E, it is easy to see that D ↑ x holds. Thus, by the above discussion
sup T (D) = S(x), and so S(xα) ↑ S(x), proving that S is order continuous.
The proof of the theorem is now complete.
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Exercises

1. A Riesz space is said to have the countable sup property, if whenever
an arbitrary subset D has a supremum, then there exists an at most
countable subset C of D with supC = supD.
(a) Show that if F is an Archimedean Riesz space with the countable sup

property and T : E → F is a strictly positive operator (i.e., x > 0
implies Tx > 0), then E likewise has the countable sup property.

(b) Let T : E → F be a positive operator between two Riesz spaces with
E having the countable sup property. Then show that T is order
continuous if and only if T is σ-order continuous.

2. Let E be Dedekind σ-complete, and let F be super Dedekind complete
(i.e., let F be Dedekind complete with the countable sup property), and
let T : E → F be a positive σ-order continuous operator. Show that:
(a) CT is a super Dedekind complete Riesz space and that T restricted

to CT is strictly positive and order continuous.
(b) CT is a projection band.
(c) T is order continuous if and only if NT is a band.

3. Let E and F be two Riesz spaces with F Dedekind complete. Consider
the band Lcσ(E,F ) := Lc(E,F ) ∩ Lσ(E,F ), and note that

Lb(E,F ) = Ln(E,F ) ⊕ Lcσ(E,F ) ⊕ Ls(E,F ) .

Thus, every operator T ∈ Lb(E,F ) has a unique decomposition of the
form T = Tn + Tcσ + Ts, where Tn ∈ Ln(E,F ), Tcσ ∈ Lcσ(E,F ), and
Ts ∈ Ls(E,F ). Clearly, Tc = Tn + Tcσ and Tσ = Tcσ + Ts hold.

If F is super Dedekind complete and T ∈ Lc(E,F ), then prove the
following statements.
(a) T ∈ Lcσ(E,F ) if and only if CT = {0} (or, equivalently, if and only

if NT is order dense in E).
(b) NT ⊕ CT ⊆ NTcσ

.
(c) The largest ideal of E on which T is order continuous is the order

dense ideal NTcσ
.

4. Let T : E → F be a positive operator between two Riesz spaces with F
Dedekind complete. Then show that:
(a) In the formula

Tn(x) = inf
{
supT (xα) : 0 ≤ xα ↑ x

}
,

the greatest lower bound is attained for each x ∈ E+ if and only if
NTσ

is order dense in E.
(b) In the formula

Tc(x) = inf
{
supT (xn) : 0 ≤ xn ↑ x

}
,

the greatest lower bound is attained for each x ∈ E+ if and only if
NTs is super order dense in E. (Recall that an ideal A in a Riesz
space E is said to be super order dense whenever for each x ∈ E+

there exists a sequence {xn} ⊆ A such that 0 ≤ xn ↑ x.)
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5. Let E and F be two Riesz spaces with F Dedekind complete. Show that
for each T ∈ Lb(E,F ) the ideal NTσ

(resp. NTs
) is the largest ideal of E

on which T is order (resp. σ-order) continuous.

6. Consider the operator T of Example 1.60. Show that T is σ-order con-
tinuous if and only if X is an uncountable set.

7. For a pair of Riesz spaces E and F with F Dedekind complete show that
the following statements are equivalent.
(a) Every order bounded operator from E to F is σ-order continuous.
(b) The null ideal of every order bounded operator from E to F is a

σ-ideal.

8. Let T : E → E be an order continuous positive operator on a Riesz space,
and let {Tα} be a net of positive order continuous operators from E to E
satisfying Tα(x) ↑ T (x) in E for each x ∈ E+. Show that:
(a) If 0 ≤ xλ ↑ x in E, then Tα(xλ) ↑

α,λ
T (x) holds in E.

(b) If x ∈ E+, then T k
α(x) ↑ T k(x) holds in E for each k.

Also, establish the sequential analogues of the above statements.

9. Let T : E → F be a positive operator between two Riesz spaces with F
Dedekind complete. Then show that the components Tσ and Ts of T for
each x ∈ E+ are given by the formulas

Tσ(x) = sup
{
inf T (xα) : x ≥ xα ↓ 0

}
and

Ts(x) = sup
{
inf T (xn) : x ≥ xn ↓ 0

}
.

10. Show that an order bounded operator T : E → F between two Riesz
spaces with F Dedekind complete is order continuous if and only if T ⊥ S
holds for each operator S ∈ Lb(E,F ) with CS = {0}.

11. As usual, if {xα} is an order bounded net in a Dedekind complete Riesz
space, then we define

lim sup xα :=
∧
α

∨
β	α

xβ and lim inf xα :=
∨
α

∧
β	α

xβ .

(a) Show that in a Dedekind complete Riesz space an order bounded net
{xα} satisfies xα−→o x if and only if x = lim sup xα = lim inf xα.

(b) If T : E → F is a positive operator between two Riesz spaces with
F Dedekind complete, then show that

Tc(x) = inf
{
lim inf T (xn) : 0 ≤ xn ≤ x and xn−→o x

}
and

Tn(x) = inf
{
lim inf T (xα) : 0 ≤ xα ≤ x and xα−→o x

}
hold for each x ∈ E+.

12. For two Riesz spaces E and F with F Dedekind complete establish the
following:
(a) If A is an ideal of E, then its annihilator

Ao :=
{
T ∈ Lb(E,F ) : T = 0 on A

}
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is a band of Lb(E,F ).
(b) If A is an ideal of Lb(E,F ), then its inverse annihilator

oA :=
{
x ∈ E : T (x) = 0 for each T ∈ A

}
is an ideal of E.

(c) Every order bounded operator from E to F is order continuous (i.e.,
Lb(E,F ) = Ln(E,F ) holds) if and only if for every order dense ideal
A of E we have Ao = {0}.

13. Consider two Riesz spaces E and F with F Dedekind complete. As usual,
we say that Lb(E,F ) separates the points of E whenever for each x �= 0
in E there exists some T ∈ Lb(E,F ) with T (x) �= 0.

Show that if Lb(E,F ) separates the points of E and (oB)o = B holds
for each band B of Lb(E,F ) (for notation see the preceding exercise), then
every order bounded operator from E to F is order continuous.

1.5. Positive Linear Functionals

Let E be a Riesz space. A linear functional f : E → R is said to be positive
whenever f(x) ≥ 0 holds for each x ∈ E+. Also, a linear functional f is
called order bounded if f maps order bounded subsets of E to bounded
subsets of R. The vector space E∼ of all order bounded linear functionals
on E is called the order dual of E, i.e., E∼ = Lb(E, R). Since R is a
Dedekind complete Riesz space, it follows at once from Theorem 1.18 that
E∼ is precisely the vector space generated by the positive linear functionals.
Moreover, E∼ is a Dedekind complete Riesz space. Recall that f ≥ g in E∼

means f(x) ≥ g(x) for all x ∈ E+. Also, note that if f, g ∈ E∼ and x ∈ E+,
then according to Theorem 1.18 we have:

(1) f+(x) = sup
{
f(y) : 0 ≤ y ≤ x

}
.

(2) f−(x) = sup
{
−f(y) : 0 ≤ y ≤ x

}
.

(3) |f |(x) = sup
{
|f(y)| : |y| ≤ x

}
.

(4) [f ∨ g](x) = sup
{
f(y) + g(z) : y, z ∈ E+ and y + z = x

}
.

(5) [f ∧ g](x) = inf
{
f(y) + g(z) : y, z ∈ E+ and y + z = x

}
.

Observe that from formula (5) the following important characterization
of disjointness in E∼ holds: For f, g ∈ E∼ we have f ⊥ g if and only if
for each ε > 0 and each x ∈ E+ there exist y, z ∈ E+ with y + z = x and
|f |(y) < ε and |g|(z) < ε.

The order dual E∼ may happen to be trivial. For instance, if 0 < p < 1,
then it has been shown by M. M. Day that the Riesz space E = Lp[0, 1]
satisfies E∼ = {0}; see our book [7, Theorem 5.24, p. 128]. In this book,
Riesz spaces with trivial order dual will be of little interest. As a matter of
fact, we are interested in Riesz spaces whose order duals separate the points
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of the spaces. Recall that the expression E∼ separates the points of E
means that for each x �= 0 there exists some f ∈ E∼ with f(x) �= 0. Since
E is a Riesz space, it is easy to see that E∼ separates the points of E if and
only if for each 0 < x ∈ E there exists some 0 < f ∈ E∼ with f(x) �= 0.

Theorem 1.66. If E∼ separates the points of the Riesz space E, then a
vector x ∈ E satisfies x ≥ 0 if and only if f(x) ≥ 0 holds for all 0 ≤ f ∈ E∼.

Proof. Clearly, if x ≥ 0 holds, then f(x) ≥ 0 likewise holds for every
0 ≤ f ∈ E∼.

For the converse, assume that some vector x ∈ E satisfies f(x) ≥ 0 for
all 0 ≤ f ∈ E∼. If 0 ≤ f ∈ E∼ is fixed, then by Theorem 1.23 there exists
some 0 ≤ g ≤ f with f(x−) = −g(x). Since by our hypothesis g(x) ≥ 0
holds, it follows that 0 ≤ f(x−) = −g(x) ≤ 0, and so f(x−) = 0 holds for
all 0 ≤ f ∈ E∼. Since E∼ separates the points of E, we see that x− = 0.
Consequently, x = x+ − x− = x+ ≥ 0 holds, and the proof is finished.

Besides the order dual of a Riesz space, we shall need to consider the
bands of order continuous and σ-order continuous linear functionals.

Let E be a Riesz space. The vector space Ln(E, R) of all order continuous
linear functionals on E will be denoted by E∼

n . Similarly, the vector space
Lc(E, R) of all σ-order continuous linear functionals on E will be denoted
by E∼

c . That is,

E∼
n := Ln(E, R) and E∼

c := Lc(E, R) .

Note that a positive linear functional f on E is order continuous if and only
if xα ↓ 0 in E implies f(xα) ↓ 0 in R. Likewise, f is σ-order continuous if
and only if for every sequence {xn} with xn ↓ 0 we have f(xn) ↓ 0 in R.
Clearly, we have

E∼
n ⊆ E∼

c ⊆ E∼ .

By Theorem 1.57 both E∼
c and E∼

n are bands of E∼. The band E∼
n will be

referred to as the order continuous dual of E, and the band E∼
c as the

σ-order continuous dual of E.
Here are two examples of Riesz spaces and their duals. (For a justifica-

tion of their duals see Section 4.1.)

(1) Let 1 ≤ p < ∞ and 1
p + 1

q = 1.
(a) If E = �p, then E∼ = E∼

c = E∼
n = �q; and

(b) if E = Lp[0, 1], then E∼ = E∼
c = E∼

n = Lq[0, 1].
(2) Consider E = C[0, 1]. Then E∼

c = E∼
n = {0}, and E∼ is the Riesz

space of all regular Borel measures on [0, 1].

Recall that the null ideal of an arbitrary linear functional f ∈ E∼ is the
ideal Nf :=

{
x ∈ E : |f |(|x|) = 0

}
, and its carrier is the band Cf := Nd

f .
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H. Nakano [150, Theorem 20.1, p. 74] has shown that two linear function-
als in E∼

n are disjoint if and only if their carriers are disjoint sets. This
remarkable result is stated next.

Theorem 1.67 (Nakano). If E is Archimedean, then for a pair f, g ∈ E∼
n

the following statements are equivalent.

(1) f ⊥ g.

(2) Cf ⊆ Ng.

(3) Cg ⊆ Nf .

(4) Cf ⊥ Cg.

Proof. Without loss of generality we can assume that 0 ≤ f, g ∈ E∼
n .

(1) =⇒ (2) Let 0 ≤ x ∈ Cf = Nd
f , and let ε > 0. In view of f ∧ g = 0,

there exists a sequence {xn} ⊆ E+ satisfying

0 ≤ xn ≤ x and f(xn) + g(x − xn) < 2−nε for all n .

Put yn =
∧n

i=1 xi, and note that yn ↓ 0 in E. Indeed, if 0 ≤ y ≤ yn holds for
all n, then 0 ≤ f(y) ≤ f(yn) < 2−nε also holds for all n, and consequently
f(y) = 0. Thus, y ∈ Cf ∩ Nf = {0}, and so y = 0.

Now since 0 ≤ g ∈ E∼
n , we see that g(x−yn) ↑ g(x). On the other hand,

from

0 ≤ g(x − yn) = g
( n∨

i=1

(x − xi)
)
≤

n∑
i=1

g(x − xi) < ε ,

it follows that 0 ≤ g(x) ≤ ε holds for all ε > 0. Thus, g(x) = 0, so that
Cf ⊆ Ng holds.

(2) =⇒ (3) Since Nf is a band, it follows from Cf = Nd
f ⊆ Ng and

Theorem 1.39 that
Cg = Nd

g ⊆ Ndd
f = Nf .

(3) =⇒ (4) Since Cg ⊆ Nf is true by our hypothesis and Nf ⊥ Cf , we see
that Cg ⊥ Cf holds.

(4) =⇒ (1) From Cf ⊥ Cg it follows that Cg ⊆ Cd
f = Ndd

f = Nf . Now if
0 ≤ x = y + z ∈ Ng ⊕ Cg, then

0 ≤ [f ∧ g](x) = [f ∧ g](y) + [f ∧ g](z) ≤ g(y) + f(z) = 0 ,

and thus f∧g = 0 holds on the order dense ideal Ng⊕Cg (see Theorem 1.36).
Since f ∧ g ∈ E∼

n , it follows that [f ∧ g](x) = 0 holds for all x ∈ E, and the
proof is finished.

It should be noted that the above proof of the implication (4) =⇒ (1)
shows that the following general result is true.
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• If two positive order continuous operators S and T satisfy CS ⊥ CT ,
then S ⊥ T .

However, as the next example shows, the converse is not true.

Example 1.68. Let A =
[
0, 1

2

]
and B =

[
1
2 , 1
]
and consider the two positive

operators S, T : L1[0, 1] → L1[0, 1] defined by

S(f) =
[ ∫ 1

0
f(x) dx

]
χA and T (f) =

[ ∫ 1

0
f(x) dx

]
χB .

The Lebesgue dominated convergence theorem shows that S and T are both
order continuous operators. On the other hand, note that if 0 ≤ f ∈ L1[0, 1],
then we have

0 ≤ [S ∧ T ](f) ≤ S(f) ∧ T (f) =
[ ∫ 1

0
f(x) dx

]
· χA ∧ χB = 0 ,

and so S ∧ T = 0 holds in Lb(L1[0, 1]).
Finally, note that NS = NT = {0}, and so CS = CT = L1[0, 1], proving

that CS and CT are not disjoint sets.

If E is a Riesz space, then its order dual E∼ is again a Riesz space. Thus,
we can consider the Riesz space of all order bounded linear functionals on
E∼. The second order dual E∼∼ of E is the order dual of E∼, that is,
E∼∼ := (E∼)∼. For each x ∈ E an order bounded linear functional x̂ can
be defined on E∼ via the formula

x̂(f) := f(x) , f ∈ E∼ .

Clearly, x ≥ 0 implies x̂ ≥ 0. Also, since fα ↓ 0 in E∼ holds if and only if
x̂(fα) = fα(x) ↓ 0 for all x ∈ E+, it easily follows that each x ∈ E defines an
order continuous linear functional on E∼. Thus, a positive operator x �→ x̂
can be defined from E to E∼∼. This operator is called the canonical
embedding of E into E∼∼. The canonical embedding always preserves
finite suprema and infima, and when E∼ separates the points of E, it is also
one-to-one. The details follow.

Theorem 1.69. Let E be a Riesz space. Then the canonical embedding
x �→ x̂ is a lattice preserving operator (from E to E∼∼).

In particular, if E∼ separates the points of E, then x �→ x̂ is also one-
to-one (and hence, in this case E, identified with its canonical image in
E∼∼, can be considered as a Riesz subspace of E∼∼).

Proof. Only the preservation of the lattice operations needs verification.
To this end, let x ∈ E and 0 ≤ f ∈ E∼. Applying Theorems 1.18 and 1.23
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consecutively, we see that

(x̂)+(f) = sup
{
x̂(g) : g ∈ E∼ and 0 ≤ g ≤ f

}
= sup

{
g(x) : g ∈ E∼ and 0 ≤ g ≤ f

}
= f(x+) = (̂x+)(f) .

That is, (x̂)+ = (̂x+) holds. Now by using the lattice identity

x ∨ y = (x − y)+ + y = −
[
(−x) ∧ (−y)

]
,

we see that the canonical embedding x �→ x̂ preserves finite suprema and
infima.

It should be noted that the canonical embedding of E into E∼∼ does
not necessarily preserve infinite suprema and infima; see Exercise 10 at the
end of this section. In the sequel the vectors of a Riesz space E will play a
double role. Besides being the vectors of E, they also will be considered (by
identifying x with x̂) as order bounded linear functionals on E∼.

Now let E be a Riesz space, and let A be an ideal of E∼. Then it is
easy to see that for each x ∈ E, the restriction of x̂ to A defines an order
continuous linear functional (and hence order bounded) on A. Therefore,
there exists a natural embedding x �→ x̂ of E into A∼

n defined by

x̂(f) := f(x) , f ∈ A .

As in Theorem 1.69 we can see that the natural embedding x �→ x̂, from
E into A∼

n , is lattice preserving and is one-to-one if and only if the ideal A
separates the points of E.

When A consists of order continuous linear functionals, H. Nakano [150,
Theorem 22.6, p. 83] has shown (among other things) that x �→ x̂ preserves
arbitrary suprema and infima. The details are included in the next theorem.

Theorem 1.70 (Nakano). Let E be an Archimedean Riesz space, and let
A be an ideal of E∼

n . Then the embedding x �→ x̂ is an order continuous
lattice preserving operator from E to A∼

n whose range is an order dense Riesz
subspace of A∼

n .

Proof. To see that x �→ x̂ is order continuous, note that if xα ↓ 0 holds in
E, then x̂α(f) = f(xα) ↓ 0 holds for each 0 ≤ f ∈ A, and so x̂α ↓ 0 holds in
A∼

n . That is, x �→ x̂ is an order continuous operator.
Now let us establish that the range of x �→ x̂ is an order dense Riesz

subspace of A∼
n . To this end, let 0 < φ ∈ A∼

n . Pick some 0 < f ∈ Cφ,
and then choose 0 < x ∈ Cf . Clearly, f(x) > 0. If x̂ ∧ φ = 0 holds,
then by Theorem 1.67 we have x̂(Cφ) = {0}, and so x̂(f) = f(x) = 0, a
contradiction. Thus, x̂ ∧ φ > 0 holds, and hence, by replacing φ with x̂ ∧ φ,
we can assume that 0 < φ ≤ x̂ holds in A∼

n for some x ∈ E. Next fix some
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0 < ε < 1 with ψ = (φ − εx)+ > 0. Choose some 0 < g ∈ Cψ, and then
select some 0 < y ∈ Cg. We claim that the vector z = y ∧ εx ∈ E satisfies
0 < ẑ ≤ φ in A∼

n .
To see that ẑ > 0 holds, note that if ẑ = ŷ ∧ εx̂ = 0, then ŷ ∧ x̂ = 0, and

so in view of 0 ≤ ψ ≤ x̂, we see that ŷ ∧ ψ = 0. By Theorem 1.67 we have
ŷ(Cψ) = {0}, and hence ŷ(f) = f(y) = 0, a contradiction. Thus, ẑ > 0.

Finally, let us establish that ẑ ≤ φ holds. To this end, assume by way
of contradiction that ω = (ẑ − φ)+ > 0. Choose 0 < h ∈ Cω, and note
that, in view of 0 < ω ≤ (εx̂ − φ)+ = (φ − εx̂)−, we have ω ⊥ ψ and so by
Theorem 1.67 we get Cω ⊥ Cψ. In particular, h ⊥ g holds, and by applying
Theorem 1.67 once more, we get h(Cg) = {0}. Therefore,

0 < ω(h) = (ẑ − φ)+(h) ≤ ẑ(h) ≤ ŷ(h) = h(y) = 0

holds, which is impossible. Hence, ẑ ≤ φ, and the proof is complete.

As an application of Theorem 1.70, we shall characterize the perfect
Riesz spaces. A Riesz space E is said to be perfect whenever the natural
embedding x �→ x̂ from E to (E∼

n )∼n is one-to-one and onto. Clearly, every
perfect Riesz space must be Dedekind complete. H. Nakano [150, Section 24]
has characterized the perfect Riesz spaces as follows.

Theorem 1.71 (Nakano). A Riesz space E is a perfect Riesz space if and
only if the following two conditions hold:

(1) E∼
n separates the points of E.

(2) Whenever a net {xα} ⊆ E satisfies 0 ≤ xα ↑ and sup
{
f(xα)

}
< ∞

for each 0 ≤ f ∈ E∼
n , then there exists some x ∈ E satisfying

0 ≤ xα ↑ x in E.

Proof. Assume that E is a perfect Riesz space, i.e., assume that x �→ x̂
from E to (E∼

n )∼n is one-to-one and onto. Then, clearly, E∼
n separates the

points of E. On the other hand, if a net {xα} ⊆ E+ satisfies 0 ≤ xα ↑ and
φ(f) = sup

{
f(xα)

}
< ∞ for each 0 ≤ f ∈ E∼

n , then it easily follows that
the mapping φ : (E∼

n )+ → R
+ is additive, and hence φ defines a positive

linear functional on E∼
n . In view of x̂α ↑ φ in (E∼

n )∼, it follows (from
Theorem 1.57) that φ ∈ (E∼

n )∼n . Pick some x ∈ E with φ = x̂, and note that
0 ≤ xα ↑ x holds in E.

For the converse assume that E satisfies the two conditions. Then, by
Theorem 1.70, the operator x �→ x̂ from E to (E∼

n )∼n is order continuous,
one-to-one, and lattice preserving whose range is order dense in (E∼

n )∼n . Now
let 0 ≤ φ ∈ (E∼

n )∼n . Pick a net {xα} ⊆ E+ with 0 ≤ x̂α ↑ φ in (E∼
n )∼n . Then

{xα} satisfies condition (2), and so there exists some x ∈ E with 0 ≤ xα ↑ x
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in E. It follows that 0 ≤ x̂α ↑ x̂ holds in (E∼
n )∼n , and thus φ = x̂, proving

that x �→ x̂ is also onto.

The (order bounded) finite rank operators will be of great importance.
If f ∈ E∼ and u ∈ F , then the symbol f ⊗u will denote the order bounded
operator of Lb(E, F ) defined by

[f ⊗ u](x) := f(x)u

for each x ∈ E. Every operator of the form f ⊗ u is referred to as a rank
one operator. Note that if f ∈ E∼

n (resp. f ∈ E∼
c ), then f ⊗ u is an order

(resp. σ-order) continuous operator. Every operator T : E → F of the form
T =
∑n

i=1fi⊗ui, where fi ∈ E∼ and ui ∈ F (i = 1, . . . , n), is called a finite
rank operator. In general, if G is a vector subspace of E∼, then we define

G⊗F :=
{
T ∈L(E, F ) : ∃n, fi ∈ G, ui ∈ F (1 ≤ i ≤ n) with T =

n∑
i=1

fi⊗ui

}
.

Clearly, G ⊗ F is a vector subspace of Lb(E, F ).
The next theorem describes some basic lattice properties of the rank one

operators.

Theorem 1.72. For a pair of Riesz spaces E and F we have the following:

(1) If 0 ≤ f ∈ E∼ and u, v ∈ F , then (f⊗u)∨(f⊗v) and (f⊗u)∧(f⊗v)
both exist in L(E, F ) and

(f ⊗ u) ∨ (f ⊗ v) = f ⊗ (u ∨ v)

and
(f ⊗ u) ∧ (f ⊗ v) = f ⊗ (u ∧ v) .

(2) If 0 ≤ u ∈ F and f, g ∈ E∼, then (f⊗u)∨(g⊗u) and (f⊗u)∧(g⊗u)
both exist in L(E, F ) and

(f ⊗ u) ∨ (g ⊗ u) = (f ∨ g) ⊗ u

and
(f ⊗ u) ∧ (g ⊗ u) = (f ∧ g) ⊗ u .

(3) If f ∈ E∼ and u ∈ F , then the modulus of f ⊗u exists in L(E, F )
and ∣∣f ⊗ u

∣∣ = |f | ⊗ |u| .

Proof. (1) Let 0 ≤ f ∈ E∼, and let u, v ∈ F . Clearly, f ⊗ u ≤ f ⊗ (u ∨ v)
and f ⊗ v ≤ f ⊗ (u∨ v) both hold. On the other hand, if some T ∈ L(E, F )
satisfies f ⊗ u ≤ T and f ⊗ v ≤ T , then for each x ∈ E+ we have[

f ⊗ (u ∨ v)
]
(x) = f(x)(u ∨ v) =

[
f(x)u

]
∨
[
f(x)v

]
≤ T (x) ∨ T (x) = T (x) .
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That is, f ⊗ (u ∨ v) ≤ T holds in Lb(E, F ), and so f ⊗ (u ∨ v) is the least
upper bound of f ⊗u and f ⊗ v in L(E, F ), as required. The other case can
be proven in a similar manner.

(2) Fix u ∈ F+ and f, g ∈ E∼. Clearly, f ⊗ u ≤ (f ∨ g) ⊗ u and
g ⊗ u ≤ (f ∨ g)⊗ u. Now let T ∈ L(E, F ) satisfy f ⊗ u ≤ T and g ⊗ u ≤ T .
Observe that if y, z ∈ E+ satisfy y + z = x, then

[f ⊗ u](y) + [g ⊗ u](z) ≤ T (y) + T (z) = T (x)

holds. Thus, for each x ∈ E+ we have[
(f ∨ g) ⊗ u

]
(x) =

[
(f ∨ g)(x)

]
· u

=
[
sup
{
f(y) + g(z) : y, z ∈ E+ and y + z = x

}]
· u

= sup
{
f(y)u + g(z)u : y, z ∈ E+ and y + z = x

}
= sup

{
[f ⊗ u](y)+[g ⊗ u](z) : y, z ∈ E+ and y+z=x

}
≤ T (x) .

Therefore, (f ∨g)⊗u is the least upper bound of f ⊗u and g⊗u in L(E, F ).
The other formula can be proven in a similar fashion.

(3) For each x ∈ E+ we have

±
[
f ⊗ u

]
(x) = ±[f(x) · u] ≤

∣∣f(x)u
∣∣ = ∣∣f(x)

∣∣ · |u|
≤ |f |(x) · |u| =

[
|f | ⊗ |u|

]
(x) ,

and so ±[f ⊗ u] ≤ |f | ⊗ |u|. Now assume that some T ∈ L(E, F ) satisfies

f ⊗ u ≤ T and − [f ⊗ u] ≤ T .

Let x ∈ E+. If f(x) < 0, then [f ⊗ |u|](x) ≤ T (x) holds trivially. On the
other, if f(x) ≥ 0, then we have

[f ⊗ |u|](x) = f(x)|u| =
[
f(x)u

]
∨
[
−f(x)u

]
≤ T (x) .

Therefore, f ⊗ |u| ≤ T holds. By the symmetry of the situation we have
(−f) ⊗ |u| ≤ T . Thus, by part (2) we see that

|f | ⊗ |u| =
[
f ⊗ |u|

]
∨
[
(−f) ⊗ |u|

]
≤ T .

Consequently, |f | ⊗ |u| is the least upper bound of f ⊗ u and −f ⊗ u. That
is, |f ⊗ u| = |f | ⊗ |u| holds in L(E, F ).

Recall that the algebraic dual V ∗ of a vector space V is the vector space
consisting of all linear functionals on V . For an operator T : V → W between
two vector spaces its algebraic adjoint (or transpose) T ∗ : W ∗ → V ∗ is
the operator defined by

[T ∗f ](v) = f(Tv)
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for all f ∈ W ∗ and v ∈ V . In standard duality notation this identity is
written as

〈T ∗f, v〉 = 〈f, Tv〉 .

Clearly, if S : V → W is another operator and α ∈ R, then

(S + T )∗ = S∗ + T ∗ and (αT )∗ = αT ∗ .

When T : E → F is an order bounded operator between two Riesz
spaces, then T ∗ carries F∼ into E∼. Indeed, if A is an order bounded
subset of E and f ∈ F∼, then it follows from [T ∗f ](A) = f

(
T (A)

)
that

[T ∗f ](A) is a bounded subset of R, and so T ∗f ∈ E∼. The restriction of T ∗

to F∼ is called the (order) adjoint of T and will be denoted by T ′. That
is, T ′ : F∼ → E∼ satisfies

〈T ′f, x〉 = 〈f, Tx〉
for all f ∈ F∼ and x ∈ E. Note that if T is a positive operator, then its
adjoint T ′ is likewise a positive operator.

The adjoint of an order bounded operator between two Riesz spaces is
always order bounded and order continuous. The details follow.

Theorem 1.73. If T : E → F is an order bounded operator between two
Riesz spaces, then its (order) adjoint T ′ : F∼ → E∼ is order bounded and
order continuous.

Proof. Assume that T : E → F is an order bounded operator. We shall
first establish that T ′ : F∼ → E∼ is order bounded.

To this end, let 0 ≤ f ∈ F∼. Consider the set

D =
{ n∑

i=1

|T ′fi| : fi ≥ 0 for each i and
n∑

i=1

fi = f
}

.

We claim that D ↑ holds in E∼. To see this, let f1, . . . , fn ∈ F∼
+ and

g1, . . . , gm ∈ F∼
+ satisfy

∑n
i=1 fi =

∑m
j=1 gj = f . By Theorem 1.20 there

exist linear functionals hij ∈ F∼
+ (i = 1, . . . , n; j = 1, . . . , m) such that

fi =
m∑

j=1

hij for i = 1, . . . , n and gj =
n∑

i=1

hij for j = 1, . . . , m .

Clearly,
∑n

i=1

∑m
j=1 hij = f . On the other hand, we have
n∑

i=1

|T ′fi| =
n∑

i=1

∣∣∣
m∑

j=1

T ′hij

∣∣∣ ≤
n∑

i=1

m∑
j=1

|T ′hij | ,

and similarly
m∑

j=1

|T ′gj | ≤
n∑

i=1

m∑
j=1

|T ′hij | .
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The above show that D ↑ holds in E∼.
Now let x ∈ E+. Since T is order bounded, there exists some u ∈ F+

satisfying |Ty| ≤ u for all |y| ≤ x. Consequently, if f1, . . . , fn ∈ F∼
+ satisfy∑n

i=1 fi = f , then we have
〈 n∑

i=1

|T ′fi|, x
〉

=
n∑

i=1

sup
{
〈T ′fi, y〉 : |y| ≤ x

}

=
n∑

i=1

sup
{
〈fi, Ty〉 : |y| ≤ x

}

≤
n∑

i=1

〈fi, u〉 = f(u) , (�)

which shows that the set
{
φ(x) : φ ∈ D

}
is bounded above in R for each

x ∈ E+. By Theorem 1.19 the supremum h = supD exists in E∼. Now if
0 ≤ g ≤ f , then |T ′g| ≤ |T ′g| + |T ′(f − g)| ≤ h holds in E∼, which shows
that T ′[0, f ] ⊆ [−h, h]. Therefore, T ′ : F∼ → E∼ is order bounded.

Finally, we show that T ′ is order continuous. To this end, let fα ↓ 0
in F∼, and let x ∈ E+ be fixed. Pick some u ∈ F+ with |Ty| ≤ u for all
|y| ≤ x. From (�) and part (3) of Theorem 1.21 we see that

[
|T ′|f
]
(x) ≤ f(u)

holds for all 0 ≤ f ∈ F∼. In particular, we have
[
|T ′|fα

]
(x) ≤ fα(u) ↓ 0,

and so
[
|T ′|fα

]
(x) ↓ 0 holds for each x ∈ E+, i.e., |T ′|fα ↓ 0 holds in E∼.

Therefore, |T ′| is order continuous, and so T ′ is likewise order continuous.
The proof of the theorem is now complete.

It is interesting to know that the converse of the preceding theorem is
false. That is, there are operators T : E → F between Riesz spaces that
are not order bounded, while their algebraic adjoints carry F∼ into E∼

and are order bounded and order continuous. For instance, the operator
T : L1[0, 1] → c0 defined by

T (f) =
(∫ 1

0
f(x) sin x dx,

∫ 1

0
f(x) sin 2x dx, . . .

)
,

is not order bounded, while

T ′ : c∼0 = �1 → L∼
1 [0, 1] = L∞[0, 1]

(where 〈T ′(x1, x2, . . .), f〉 =
∑∞

n=1 xn

∫ 1
0 f(x) sin nx dx) is order bounded and

order continuous. For details see Exercise 10 of Section 5.1.
Consider an order bounded operator T : E → F between two Riesz

spaces. By Theorem 1.73 we know that T ′ : F∼ → E∼ is likewise order
bounded, and so (since E∼ is Dedekind complete) the modulus of T ′ exists.
On the other hand, if the modulus of T also exists, then it follows from
±T ≤ |T | that ±T ′ ≤ |T |′. That is, whenever the modulus of T exists, then
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|T ′| ≤ |T |′ holds. The strict inequality |T ′| < |T |′ may very well happen, as
the next example shows.

Example 1.74. Consider the operator T : �1 → �∞ defined by

T (x1, x2, . . .) = (x1 − x2, x2 − x3, x3 − x4, . . .) .

Clearly, T is a regular operator, and an easy argument shows that

|T |(x1, x2, . . .) = sup
{
T (y1, y2, . . .) : |(y1, y2, . . .)| ≤ (x1, x2, . . .)

}
= (x1 + x2, x2 + x3, x3 + x4, . . .)

holds for all 0 ≤ (x1, x2, . . .) ∈ �1.
Next consider the Riesz subspace c of �∞ consisting of all convergent

sequences. Clearly, c majorizes �∞, and moreover the formula

φ(x1, x2, . . .) = lim
n→∞

xn , (x1, x2, . . .) ∈ c ,

defines a positive linear functional on c. By Theorem 1.32 the positive linear
functional φ has a positive linear extension to all of �∞, which we denote by
φ again. Put e = (1, 1, . . .), and note that〈

|T |′φ, e
〉

=
〈
φ, |T |e

〉
= φ(2, 2, . . .) = 2 .

Now let ψ ∈ �∼∞ satisfy |ψ| ≤ φ. Note that if (x1, x2, . . .) ∈ �∞ satisfies
limn→∞ xn = 0, then the relation∣∣ψ(x)

∣∣ ≤ |ψ|(|x|) ≤ φ(|x|) = lim
n→∞

|xn| = 0 ,

implies ψ(x) = 0. Therefore, [T ′ψ](x) = ψ(Tx) = 0 holds for all x ∈ �1. In
other words, T ′ψ = 0 holds for all |ψ| ≤ φ, and so by Theorem 1.14 we see
that

|T ′|φ = sup
{
|T ′ψ| : |ψ| ≤ φ

}
= 0 .

Thus, 0 =
〈
|T ′|φ, e

〉
�=
〈
|T |′φ, e

〉
= 2, and consequently the operator T

satisfies |T ′| < |T |′.

To continue our discussion we need a simple lemma.

Lemma 1.75. If T : E → F is an order bounded operator between two Riesz
spaces, then for each 0 ≤ f ∈ F∼ and each x ∈ E+ we have〈

f, |Tx|
〉
≤
〈
|T ′|f, x

〉
.

Proof. Fix 0 ≤ f ∈ F∼ and x ∈ E+. Then by Theorem 1.23 there exists
some g ∈ F∼ with |g| ≤ f and

〈
f, |Tx|

〉
=
〈
g, Tx

〉
. Thus,〈

f, |Tx|
〉

=
〈
g, Tx

〉
=
〈
T ′g, x

〉
≤
〈
|T ′||g|, x

〉
≤
〈
|T ′|f, x

〉
,

as desired.
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Although |T ′| and |T |′ need not be equal, they do agree on the order con-
tinuous linear functionals. This important result is due to U. Krengel [105]
and J. Synnatzschke [181] and is stated next.

Theorem 1.76 (Krengel–Synnatzschke). If T : E → F is an order bounded
operator between two Riesz spaces with F Dedekind complete, then∣∣T ′∣∣f = |T |′f
holds for all f ∈ F∼

n .

Proof. Let 0 ≤ f ∈ F∼
n be fixed. We already know that

∣∣T ′∣∣f ≤ |T |′f holds.
On the other hand, if 0 ≤ x ∈ E, then from Theorem 1.21 and Lemma 1.75
we see that〈

|T |′f, x
〉

=
〈
f, |T |x

〉

=
〈
f, sup

{ n∑
i=1

|Txi| : xi ∈ E+ and
n∑

i=1

xi = x
}〉

= sup
{ n∑

i=1

〈
f, |Txi|

〉
: xi ∈ E+ and

n∑
i=1

xi = x
}

≤
{ n∑

i=1

〈
|T ′|f, xi

〉
: xi ∈ E+ and

n∑
i=1

xi = x
}

=
〈∣∣T ′∣∣f, x

〉
,

and so |T |′f ≤
∣∣T ′∣∣f . Therefore,

∣∣T ′∣∣f = |T |′f holds for all f ∈ F∼
n .

When is every order bounded linear functional on a Riesz space σ-order
continuous?

As we shall see, this question is closely related to the following question
regarding a σ-order continuity property of the map T �→ T 2, from Lb(E) to
Lb(E). When does 0 ≤ Tn ↑ T in Lb(E) imply T 2

n ↑ T 2 ?
In general, 0 ≤ Tn ↑ T does not imply T 2

n ↑ T 2, even if T and all the
Tn are rank one operators.

Example 1.77. Let E = �∞, the Dedekind complete Riesz space of all
bounded real-valued sequences, and consider the Riesz subspace c of E con-
sisting of all convergent sequences. Clearly, c majorizes E and the formula
f(x) = limxn defines a positive linear functional on c. By Theorem 1.32 the
positive linear functional has a positive linear extension to all of E (which
we denote by f again.)

Now let un = (1, 1, . . . , 1n , 0, 0, . . .) and e = (1, 1, . . .). Put Tn = f ⊗ un,
T = f ⊗ e, and note that 0 ≤ Tn ↑ T holds in Lb(E). On the other hand, it
is not difficult to see that T 2

n = 0 for each n and T 2 = T . So, T 2
n � ↑ T 2.
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In contrast to the preceding example, observe that Tn ↓ 0 in Lb(E)
implies T 2

n ↓ 0. (To see this, note that 0 ≤ T 2
n(x) ≤ Tn(T1x) for all x ∈ E+.)

Example 1.77 can be used to establish the existence of a Dedekind com-
plete Riesz space E with the property that for each k, there exists a se-
quence {Tn} of positive operators on E such that 0 ≤ T i

n ↑n T i holds for
each i = 1, . . . , k and T k+1

n � ↑ T k+1. The next example is taken from [18].

Example 1.78. Let f , un, and e be as they were defined in Example 1.77,
and let E = (�∞)N (= the Dedekind complete Riesz space of all �∞-valued
sequences).

Now let k be fixed, and define the positive operators

Tn(x1, x2, . . .) =
(
f(xk)un, x1, . . . , xk−1, 0, 0, . . .

)
,

and

T (x1, x2, . . .) =
(
f(xk)e, x1, . . . , xk−1, 0, 0, . . .

)
.

Then it is a routine matter to verify that

0 ≤ T i
n ↑ T i for each i = 1, . . . , k and T k+1

n � ↑ T k+1

hold in Lb(E).

The next result of C. D. Aliprantis, O. Burkinshaw and P. Kranz [18]
characterizes the Riesz spaces on which every positive linear functional is
σ-order continuous.

Theorem 1.79 (Aliprantis–Burkinshaw–Kranz). For a Riesz space E whose
order dual separates the points of E the following statements are equiva-
lent:

(a) E∼
c = E∼, i.e., every positive linear functional on E is σ-order

continuous.

(b) Whenever T : E → E is a positive operator and a sequence {Tn} of
positive operators from E to E satisfies Tn(x) ↑ T (x) in E for each
x ∈ E+, then T 2

n(x) ↑ T 2(x) likewise holds in E for each x ∈ E+.

Proof. (1) =⇒ (2) Let 0 ≤ Tn(x) ↑ T (x) for each x ∈ E+, and let y ∈ E+

be fixed. Clearly, 0 ≤ T 2
n(y) ↑≤ T 2(y) holds in E. To see that T 2(y) is the

least upper bound of the sequence
{
T 2

n(y)
}
, let T 2

n(y) ≤ z hold in E for all
n. Then for each 0 ≤ f ∈ E∼ we have f

(
T 2

n(y)
)
≤ f(z) for all n.

On the other hand, it follows that for each 0 ≤ f ∈ E∼ the sequence
{f ◦ Tn} ⊆ E∼ = E∼

c satisfies 0 ≤ f ◦ Tn ↑ f ◦ T in E∼. Thus,

f
(
T 2

n(y)
)

= [f ◦ Tn](Tny) ↑ [f ◦ T ](Ty) = f
(
T 2(y)

)
,
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and so f
(
T 2(y)

)
≤ f(z) holds for all 0 ≤ f ∈ E∼. Since E∼ separates

the points of E, it follows from Theorem 1.66 that T 2(y) ≤ z. Therefore,
T 2

n(y) ↑ T 2(y) holds in E for each y ∈ E+.

(2) =⇒ (1) Fix 0 ≤ f ∈ E∼, and let 0 ≤ xn ↑ x in E. Then we have
0 ≤ [f ⊗ xn](y) ↑ [f ⊗ x](y) for all y ∈ E+, and so by our hypothesis

[f ⊗ xn]2(y) = f(xn)
[
f(y)xn

]
↑ [f ⊗ x]2(y) = f(x)

[
f(y)x

]
also holds for all y ∈ E+. Now an easy argument shows that f(xn) ↑ f(x),
and hence f is σ-order continuous. Therefore, E∼

c = E∼ holds.

Since E∼ is Dedekind complete, every band of E∼ is a projection band
(see Theorem 1.42). The rest of the section is devoted to deriving formulas
for the order projections of E∼.

Theorem 1.80. Let E be a Riesz space and let φ ∈ E∼. If Pφ denotes the
order projection of E∼ onto the band generated by φ, then for each x ∈ E+

and each 0 ≤ f ∈ E∼ we have

[Pφf ](x) = sup
ε>0

inf
{
f(y) : 0 ≤ y ≤ x and |φ|(x − y) < ε

}
.

Proof. We can assume that 0 ≤ φ ∈ E∼. Fix x ∈ E+ and 0 ≤ f ∈ E∼, and
put

r = sup
ε>0

inf
{
f(y) : 0 ≤ y ≤ x and |φ|(x − y) < ε

}
.

Fix ε > 0. Since f ∧ nφ ↑ Pφf (Theorem 1.47), there exists some k with
(Pφf − f ∧ kφ)(x) < ε. Now let 0 < δ < ε, and let 0 ≤ y ≤ x satisfy
φ(x − y) < δ. Then we have

[Pφf ](x) = (Pφf − f ∧ kφ)(x) + (f ∧ kφ)(x) < ε + (f ∧ kφ)(x)

≤ ε + kφ(x − y) + f(y) < ε + kδ + f(y) ,

and consequently

[Pφf ](x) ≤ ε + kδ + inf
{
f(y) : 0 ≤ y ≤ x and φ(x − y) < δ

}
≤ ε + kδ + r

holds for all 0 < δ < ε. Thus, [Pφf ](x) ≤ ε + r holds for all ε > 0, and
therefore [Pφf ](x) ≤ r.

For the reverse inequality, let ε > 0. Since (f − Pφf) ∧ φ = 0, for each
0 < δ < ε there exists some 0 ≤ z ≤ x with

(
f − Pφf

)
(z) + φ(x − z) < δ.

This implies f(z) < δ − φ(x − z) + [Pφf ](z) < δ + [Pφf ](x). In particular,
we have

inf
{
f(y) : 0 ≤ y ≤ x and φ(x − y) < ε

}
≤ f(z) < δ + [Pφf ](x)

for all ε > 0. This implies that r ≤ [Pφf ](x), and hence [Pφf ](x) = r.
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The next theorem presents a formula for Pφ in terms of increasing se-
quences and is due to W. A. J. Luxemburg [125, Note XV].

Theorem 1.81 (Luxemburg). Let E be a Riesz space and let φ ∈ E∼. Then
for each x ∈ E+ and 0 ≤ f ∈ E∼ we have

[Pφf ](x) = inf
{
sup f(xn) : 0 ≤ xn ↑≤ x and |φ|(x − xn) ↓ 0

}
.

Proof. We can assume that 0 ≤ φ ∈ E∼. Fix x ∈ E+ and 0 ≤ f ∈ E∼ and
put

r = inf
{
sup f(xn) : 0 ≤ xn ↑≤ x and |φ|(x − xn) ↓ 0

}
.

Let 0 ≤ xn ↑≤ x satisfy φ(x − xn) ↓ 0. Then for each n and k we have

[Pφf ](x) − f(xn) ≤ [Pφf ](x − xn)

≤ (Pφf − f ∧ kφ)(x) + (f ∧ kφ)(x − xn)

≤ (Pφf − f ∧ kφ)(x) + kφ(x − xn) ,

and so, taking limits with respect to n, we get

[Pφf ](x) − sup f(xn) ≤ (Pφf − f ∧ kφ)(x)

for all k. Since f ∧ kφ ↑ Pφf , it follows that [Pφf ](x) ≤ sup f(xn), and from
this we see that [Pφf ](x) ≤ r.

Now let ε > 0. Since (f−Pφf)∧φ = 0 holds, for each n there exists some
0 ≤ yn ≤ x with (f − Pφf)(yn) + φ(x − yn) < ε2−n. Put xn =

∨n
i=1 yi, and

note that 0 ≤ xn ↑≤ x. From 0 ≤ φ(x − xn) ≤ φ(x − yn) → 0, we see that
φ(x − xn) ↓ 0. Also, note that 0 ≤ (f − Pφf)(xn) ≤

∑n
i=1(f − Pφf)(yi) < ε

holds. Therefore,

r ≤ sup f(xn) ≤ sup(f − Pφf)(xn) + sup[Pφf ](xn) ≤ ε + [Pφf ](x)

holds for all ε > 0, and so r ≤ [Pφf ](x). Consequently, [Pφf ](x) = r holds,
and the proof is finished.

A formula, due to the authors [16], describing the order projection onto
an arbitrary band of E∼ is presented next.

Theorem 1.82 (Aliprantis–Burkinshaw). Let E be a Riesz space and let B
be a band of E∼. If PB denotes the order projection of E∼ onto B, then for
each x ∈ E+ and 0 ≤ f ∈ E∼ we have

[PBf ](x) = sup
ε>0
φ∈B+

inf
{
f(y) : 0 ≤ y ≤ x and φ(x − y) < ε

}
.

Proof. Fix x ∈ E+ and 0 ≤ f ∈ E∼, and put

r = sup
ε>0
φ∈B+

inf
{
f(y) : 0 ≤ y ≤ x and φ(x − y) < ε

}
.
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Note that for each φ ∈ B+ we have Pφ ≤ PB. Thus from Theorem 1.80
it easily follows that r ≤ [PBf ](x). Now let ψ = PBf . Then ψ ∈ B+, and
so by Theorem 1.80 we have

[PBf ](x) = [Pψψ](x) ≤ [Pψf ](x)

= sup
ε>0

inf
{
f(y) : 0 ≤ y ≤ x and ψ(x − y) < ε

}
≤ r .

Thus, [PBf ](x) = r holds, as desired.

In view of Theorem 1.81, it might be expected that the following formula
also holds:

[PBf ](x) = inf
{
sup f(xn) : 0 ≤ xn ↑≤ x and φ(x − xn) ↓ 0 ∀φ ∈ B+

}
.

Unfortunately, such formula is not true. For an example, let E be the
Riesz space of all Lebesgue integrable (real-valued) functions on [0, 1] with
the pointwise ordering. (Note that two functions differing at one point
are considered to be different.) Since xα ↓ 0 in E implies xα(t) ↓ 0 for
each t ∈ [0, 1], it follows that the point evaluations x �→ x(t) are all order
continuous positive linear functionals on E. This implies that E∼

n separates
the points of E. Now consider the positive linear functional f : E → R

defined by

f(x) =
∫ 1

0
x(t) dt .

According to Example 1.55, the linear functional f is σ-order continuous
but not order continuous. If B = E∼

n , then

inf
{
sup f(xn) : 0 ≤ xn ↑≤ 1 and φ(1 − xn) ↓ 0 for all φ ∈ B+

}
= inf

{
sup f(xn) : 0 ≤ xn ↑ 1

}
= f(1) = 1 .

On the other hand, it is not difficult to see that [PBf ](1) < 1 must hold.
Finally, we close this section by presenting necessary and sufficient con-

ditions for a linear functional to belong to a principal band of E∼.

Theorem 1.83. Let E be a Riesz space and let f ∈ E∼. Then for an order
bounded linear functional g ∈ E∼ the following statements are equivalent.

(1) g belongs to the principal band generated by f in E∼.

(2) For each x ∈ E+ and ε > 0 there exists some δ > 0 such that
whenever |y| ≤ x satisfies |f |(|y|) < δ, then |g|(|y|) < ε holds.

(3) If an order bounded sequence {xn} of E satisfies lim |f |(|xn|) = 0,
then lim g(xn) = 0.

(4) If 0 ≤ xn ↑≤ x and lim |f |(x − xn) = 0, then lim g(x − xn) = 0.
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Proof. (1) =⇒ (2) Let x ∈ E+ and ε > 0. Since |g| ∧ k|f | ↑ |g| holds in E∼

(Theorem 1.47), there exists some k with (|g| − |g| ∧ k|f |)(x) < ε. If |y| ≤ x
satisfies |f |(|y|) ≤ ε

k , then we have

|g|(|y|) =
(
|g| − |g| ∧ k|f |

)
(|y|) +

(
|g| ∧ k|f |

)
(|y|)

≤
(
|g| − |g| ∧ k|f |

)
(x) + k|f |(|y|) < ε + ε = 2ε .

(2) =⇒ (3) and (3) =⇒ (4) are obvious.

(4) =⇒ (1) Write g = φ + ψ, with φ ∈ Bf and ψ ⊥ f . Fix x ∈ E+

and ε > 0. Now let 0 ≤ y ≤ x. Since ψ ⊥ f holds, for each n there exists
some 0 ≤ yn ≤ y with |ψ|(yn) + |f |(y − yn) < 2−nε. Then xn =

∨n
i=1 yi

satisfies 0 ≤ xn ↑≤ y and |ψ|(xn) ≤
∑n

i=1 |ψ|(yi) < ε. On the other hand,
the inequalities |f |(y − xn) ≤ |f |(y − yn) ≤ 2−nε imply |f |(y − xn) ↓ 0.
Hence, by our hypothesis lim g(y − xn) = 0. In particular, note that

g(y) = lim
n→∞

g(xn) = lim
n→∞

[
φ(xn) + ψ(xn)

]
≤ lim sup

n→∞

[
|φ|(x) + |ψ|(xn)

]
≤ |φ|(x) + ε .

Since ε > 0 is arbitrary, we see that g(y) ≤ |φ|(x) holds for all 0 ≤ y ≤ x.
Therefore,

g+(x) = sup
{
g(y) : 0 ≤ y ≤ x

}
≤ |φ|(x)

holds for all x ∈ E+. Hence, g+ ∈ Bf . Similarly, g− ∈ Bf , and therefore
g = g+ − g− ∈ Bf , and the proof is finished.

Exercises

1. Show that if f : E → R is a σ-order continuous linear functional on an
Archimedean Riesz space, then f is order bounded.

2. Consider an Archimedean Riesz space E. If f ∈ E∼
n and g ∈ E∼, then

show that the following statements are equivalent.
(a) f ⊥ g.
(b) Cg ⊆ Nf .
(c) Cg ⊥ Cf .

3. Establish the following properties of perfect Riesz spaces.
(a) Every band of a perfect Riesz space is a perfect Riesz space in its

own right.
(b) If F is a perfect Riesz space, then Lb(E,F ) is likewise a perfect

Riesz space for each Riesz space E. (In particular, the order dual of
every Riesz space is a perfect Riesz space.)

(c) If E is a perfect Riesz space, then E∼∼ is retractable on E.

4. Let E and F be two Riesz spaces such that E∼
n = E∼ and F∼ separates

the points of F . Then show that every positive operator from E to F
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is order continuous. (Also, state and prove the corresponding result for
σ-order continuous operators.)

5. Let E be a Riesz space. If 0 ≤ f ∈ E∼, then show that

f(x ∨ y) = sup
{
g(x) + h(y) : g ∧ h = 0 and g + h = f

}
,

and

f(x ∧ y) = inf
{
g(x) + h(y) : g ∧ h = 0 and g + h = f

}
hold for all x, y ∈ E.

6. Let E and F be two Riesz spaces with F Dedekind complete, and let
f, g ∈ E∼ and x, y ∈ F . Show that if either f ⊥ g in E∼ or x ⊥ y in F ,
then f ⊗ x ⊥ g ⊗ y holds in Lb(E,F ).

7. Let E and F be two Riesz spaces with F Dedekind complete. If x, y ∈ F
and f ∈ E∼, then prove the following identities in Lb(E,F ):
(a) (f ⊗ x) ∨ (f ⊗ y) = f+ ⊗ (x ∨ y) − f− ⊗ (x ∧ y).
(b) (f ⊗ x)+ = f+ ⊗ x+ + f− ⊗ x−.
(c) (f ⊗ x)− = f+ ⊗ x− + f− ⊗ x+.

8. Let T : E → F be an order continuous operator between two Riesz spaces
such that E∼ separates the points of E and let 0 < y ∈ E and x ∈ F+.
If Ty ∧ x = 0 holds in F , then show that there exists some 0 < f ∈ E∼

with T ∧ (f ⊗ x) = 0.

9. Show that the singular linear functionals on L∞[0, 1] separate the points
of L∞[0, 1]. [Hint : Assume that f > 0. Fix some ε > 0 such that
A =

{
x ∈ [0, 1] : f(x) ≥ ε

}
has positive measure. Write A =

⋃∞
n=1 An

with {An} pairwise disjoint and each An having positive measure, and let
fn = fχAn

. Now consider the Riesz subspace

G =
{ ∞∑

n=1

αnfn : (α1, α2, . . .) ∈ c
}

,

and define the positive linear functional φ : G → R by

φ
( ∞∑

n=1

αnfn

)
= lim

n→∞
αn .

Since φ(g) ≤ 1
ε ess sup |g| holds for all g ∈ G, it follows from Theorem 1.27

that φ has a positive linear extension to all of L∞[0, 1]. Now note that
φs(f) > 0. ]

10. If E = C[0, 1], then show that:
(a) E∼

n = E∼
c = {0}.

(b) The canonical embedding of E into E∼∼ does not preserve infi-
nite suprema and infima. [Hint : Consider the linear functional
φ : C[0, 1] → R defined by φ(f) = f(1), and let fn(x) = xn. Then
fn ↓ 0 holds in E, while f̂n(φ) = 1 for all n. ]

11. Let E = L0[0, 1]. That is, let E be the Riesz space of all Lebesgue
measurable functions on [0, 1] with the ordering f ≥ g if f(x) ≥ g(x)
holds for almost all x. Show that E∼ = {0}.
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12. For each a ∈ [0, 1] define the positive linear functional δa : C[0, 1] → R by
δa(f) = f(a) for each f ∈ C[0, 1].

If T : C[0, 1] → C[0, 1] is the regular operator defined by

[Tf ](x) = f(x) − f
(
x2
)
,

then establish the following properties:
(a) The modulus of T exists and is given by the formula

[|T |f ](x) = f(x) + f
(
x2
)
.

(b) |T ′|δa = |T |′δa holds for each 0 < a < 1.
(c) |T ′|δ0 < |T |′δ0 and |T ′|δ1 < |T |′δ1.

13. Let E be a Dedekind complete Riesz space such that E∼ separates its
points. Show that E∼

c = E∼ holds if and only if Tn ↓ T ≥ 0 in Lb(E)
implies T 2

n ↓ T 2.

14. State and prove the analogue of Theorem 1.79 for order continuous linear
functionals.

15. Let E be a Riesz space, and let φ ∈ E∼. Then show that for each x ∈ E+

and 0 ≤ f ∈ E∼ we have

[Pφf ](x) = inf
{
sup f(xn) : 0 ≤ xn ≤ x and lim

n→∞
|φ|(x − xn) = 0

}
.

16. Let E be a Riesz space and let φ ∈ E∼. If Q denotes the order projection
of E∼ onto the band {φ}d, then show that for each x ∈ E+ and each
0 ≤ f ∈ E∼ we have

[Qf ](x) = inf
ε>0

sup
{
f(y) : 0 ≤ y ≤ x and |φ|(y) < ε

}

= sup
{
inf f(xn) : 0 ≤ xn ↓≤ x and |φ|(xn) ↓ 0

}
.

17. Let E be a Riesz space, and let f be in the band generated by g in E∼.
Show that Cf ⊆ Cg.

18. Let E be a Riesz space, and let f ∈ E∼
n . If g ∈ E∼, then show that f is

in the band generated by g if and only if |g|(|x|) = 0 implies f(x) = 0.

19. Let E be a Riesz space, and let B be the band generated in E∼ by
a sequence {φ1, φ2, . . .} ⊆ E∼. Show that for each x ∈ E+ and each
0 ≤ f ∈ E∼ we have

[PBf ](x)=inf
{
sup f(xn) : 0≤xn ↑≤ x and |φk|(x−xn) ↓ 0 for all k

}
.

20. Let E be a Riesz space and let g ∈ E∼
c . Then show that

[Pgf ](x) = fc(x)

holds for all x ∈ Cg and all f ∈ E∼.

21. (Nakano [150]) Let E be a Dedekind σ-complete Riesz space, and let
f : E → R be a linear functional. If some sequence {fn} of E∼ converges
pointwise to f (i.e., fn(x) → f(x) holds for all x ∈ E), then show that f ∈
E∼. Can the Dedekind σ-completeness be replaced by Archimedeaness?



1.5. Positive Linear Functionals 77

22. A sequence {un} in a Riesz space is said to be disjoint whenever n �= m
implies un ⊥ um.

Let {xn} be a disjoint sequence in a Riesz space E. If {fn} is a
sequence of E∼, then show that there exists a disjoint sequence {gn} of
E∼ (which is positive if the sequence {fn} is positive) with |gn| ≤ |fn| and
gn(xn) = fn(xn) for all n. [Hint : Consider each xn as a vector of (E∼)∼n ,
and let Nn =

{
h ∈ E∼ : |h|(|xn|) = 0

}
and Cn = Nd

n . Since Nn is a band,
we have E∼ = Nn ⊕Cn. The disjointness condition xn ⊥ xm implies (by
Theorem 1.67) Cn ⊥ Cm (n �= m). Now let gn be the projection of fn

onto the band Cn. ]



Chapter 2

Components,
Homomorphisms,
and Orthomorphisms

The basic properties of positive operators were investigated in the previous
chapter. In this chapter we shall study the lattice behavior of three specific
classes of positive operators.

The first section of this chapter deals with the components of a positive
operator. If T : E → F is a positive operator between Riesz spaces with
F Dedekind complete, then a positive operator S : E → F is said to be a
component of T whenever S∧ (T −S) = 0 holds in Lb(E, F ). The operators
of the form QTP , where Q is an order projection on F and P is an order
projection on E, are the simplest components of T , and they are called
elementary components. We shall see that the elementary components are
the “building blocks” for all components, and to a larger extend the building
blocks for all positive operators in the ideal generated by T .

The second class of positive operators under investigation is the class
of lattice homomorphisms. An operator T : E → F between two Riesz
spaces is said to be a lattice homomorphism whenever it preserves the lattice
operations, that is, whenever T (x ∨ y) = T (x) ∨ T (y) holds for all x, y ∈ E.
The remarkable properties of lattice homomorphisms are unraveled in the
second section of this chapter.

An operator T : E → F between two Riesz spaces is said to preserve
disjointness whenever x ⊥ y in E implies Tx ⊥ Ty in F . Among the
operators preserving disjointness are the band preserving operators on a

79
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Riesz space, i.e., the operators that leave all bands invariant. The order
bounded band preserving operators are called orthomorphisms, and they
are the subject of discussion in the third section of this chapter.

2.1. The Components of a Positive Operator

Let T : E → F be a positive operator between two Riesz spaces with F
Dedekind complete. The purpose of this section is to describe the compo-
nents of T . Recall that a positive operator S : E → F is a component of T
whenever S ∧ (T − S) = 0. As usual, CT will denote the Dedekind complete
Boolean algebra of all components of T ; see Theorem 1.49. That is,

CT =
{
S ∈ Lb(E, F ) : S ∧ (T − S) = 0

}
.

When a positive operator is defined by a matrix, its components have
a simple description. The details are included in the next theorem whose
proof follows immediately from Theorem 1.24.

Theorem 2.1. Let {Ei : i ∈ I} and {Fj : j ∈ J} be two families of Riesz
spaces with each Fj Dedekind complete, and let T = [Tji] and S = [Sji] be
two positive operators from

∑
⊕Ei to

∑
⊕Fj. Then S is a component of

T if and only if each Sji is a component of Tji for all i ∈ I and all j ∈ J .

Now fix an order projection P on E and an order projection Q on the
Dedekind complete Riesz space F .

Then the operator Π: Lb(E, F ) → Lb(E, F ) defined by Π(T ) = QTP
satisfies 0 ≤ Π(T ) ≤ T for each T ∈ L+

b (E, F ) and Π2 = Π. Thus, by Theo-
rem 1.44 the operator Π is an order projection on Lb(E, F ). In particular,
if T is a positive operator, then for each order projection Q on F and each
order projection P on E the operator QTP is a component of T . Any com-
ponent of the form QTP will be referred to as an elementary component
of T . Any component of the form

∨n
i=1QiTPi (i.e., any finite supremum

of elementary components) will be called a simple component of T . We
shall denote the collection of all simple components of T by ST .

It is not difficult to see that if Π1 and Π2 are two order projections on
a Riesz space, then

Π1u ∧ Π2v = Π1Π2(u ∧ v)

holds for all u, v ≥ 0. Thus, if Q1, Q2 are order projections on F and P1,
P2 are order projections on E, then the above identity applied to the order
projections Π1(T ) = Q1TP1 and Π2(T ) = Q2TP2 on Lb(E, F ) shows that

(Q1SP1) ∧ (Q2TP2) = Q1Q2(S ∧ T )P1P2
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holds for all S, T ∈ L+
b (E, F ). In particular, it follows that if either Q1Q2 =0

or P1P2 = 0, then Q1TP1 ⊥ Q2SP2 holds for all S, T ∈ L+
b (E, F ). This

observation shows that

T − QTP = (I − Q)T + QT (I − P ) =
[
(I − Q)T

]
∨
[
QT (I − P )

]
.

Now let T : E → F be a positive operator between two Riesz spaces
with F Dedekind complete. If

∨n
i=1QiTPi and

∨m
j=1RjTSJ are two simple

components of T , then by the preceding discussion we see that

( n∨
i=1

QiTPi

)
∨
( m∨

j=1

RjTSj

)
∈ ST ,

( n∨
i=1

QiTPi

)
∧
( m∨

j=1

RjTSj

)
=

n∨
i=1

m∨
j=1

QiRjTPiSj ∈ ST ,

and

T −
n∨

i=1

QiTPi =
n∧

i=1

(T − QiTPi)=
n∧

i=1

[
(I − Qi)T ∨ QiT (I − Pi)

]
∈ ST .

Therefore, ST is a Boolean subalgebra of the (Dedekind complete) Boolean
of all components CT of T .

Our next objective is to show how to obtain (in certain cases) every
component of T from the simple components. This will show, of course, that
the elementary components are the “building blocks” for the components of
an operator. We start with a lemma.

Lemma 2.2. Let E have the principal projection property, let F be Dedekind
complete, and let S, T : E → F be two positive operators satisfying 0≤S≤T .
If x1, . . . , xn ∈ E+ are pairwise disjoint vectors and x = x1 + · · · + xn,
then there exist order projections P1, . . . , Pn on E and order projections
Q1, . . . , Qn on F such that:

(1) PiPj = 0 for i �= j.

(2) P1x + · · · + Pnx = x.

(3)
∣∣S −

∑n
i=1QiTPi

∣∣x ≤
∑n

i=1Sxi ∧ (T − S)xi.

Proof. Let x1, . . . , xn ∈ E+ be pairwise disjoint such that x1+ · · ·+xn = x.
Denote by Pi (1 ≤ i ≤ n) the order projection of E onto the band generated
by xi. From xi∧xj = 0 (i �= j), it follows that PiPj = 0 (i �= j). In addition,
Pix = xi holds for each i, and so P1x + · · · + Pnx = x1 + · · · + xn = x.

Now let Qi (1 ≤ i ≤ n) denote the order projection of F onto the band
generated by (2Sxi−Txi)+. Clearly, Qi

[
(2S−T )xi

]
= (2Sxi−Txi)+. Now
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notice that

∣∣∣S −
n∑

i=1

QiTPi

∣∣∣x ≤
[
S −

n∑
i=1

QiSPi

]
x +
[ n∑

i=1

Qi(T − S)Pi

]
x

= Sx −
n∑

i=1

Qi

[
(2S − T )Pix

]

= Sx −
n∑

i=1

(2Sxi − Txi)+

= Sx −
n∑

i=1

[
Sxi − (T − S)xi

]+

= Sx −
n∑

i=1

[
Sxi − Sxi ∧ (T − S)xi

]

=
n∑

i=1

Sxi ∧ (T − S)xi ,

and the proof is finished.

The next result shows that every component of a positive operator can
be approximated by elementary components. This will be the basic tool for
this section.

Theorem 2.3. Let T : E → F be a positive operator between two Riesz
spaces where E has the principal projection property and F is Dedekind
complete. If S is a component of T , then given x∈E+, 0≤f ∈F∼

n , and ε > 0,
there exist pairwise disjoint order projections P1, . . . , Pn on E and order
projections Q1, . . . , Qn on F such that the simple component

∑n
i=1QiTPi

(=
∨n

i=1QiTPi ) of T satisfies

〈
f,
∣∣∣S −

n∑
i=1

QiTPi

∣∣∣x
〉

< ε .

Proof. Let x ∈ E+, 0 ≤ f ∈ F∼
n , let ε > 0 be fixed, and let S be a

component of T . By Theorem 1.51 we have

{ n∑
i=1

Sxi ∧ (T − S)xi : xi ≥ 0, xi ⊥ xj ,
n∑

i=1

xi = x
}
↓
[
S ∧ (T − S)

]
x = 0 ,

and so, by the order continuity of f , there exist pairwise disjoint vectors
x1, . . . , xn ∈ E+ with x1 + · · · + xn = x and

〈
f,
∑n

i=1Sxi ∧ (T − S)xi

〉
< ε.
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Now by Lemma 2.2 there exist pairwise disjoint order projections
P1, . . . , Pn on E and order projections Q1, . . . , Qn on F such that

∣∣∣S −
n∑

i=1

QiTPi

∣∣∣x ≤
n∑

i=1

Sxi ∧ (T − S)xi .

Therefore,
〈
f, |S −

∑n
i=1QiTPi|x

〉
< ε. On the other hand, since the order

projections P1, . . . , Pn are pairwise disjoint operators, the elementary com-
ponents Q1TP1, . . . , QnTPn are also pairwise disjoint, and consequently we
have

∑n
i=1QiTPi =

∨n
i=1QiTPi ∈ ST .

Let E be a Riesz space. Then for a subset A of E we shall employ the
following notation:

A� :=
{
x ∈ E : ∃ a sequence {xn} ⊆ A with xn ↑ x

}
, and

A↑ :=
{
x ∈ E : ∃ a net {xα} ⊆ A with xα ↑ x

}
.

The meanings of A� and A↓ are analogous. As usual, also we shall write
A�↓ = (A�)↓, A�↑↓ := ((A�)↑)↓, etc. Clearly, A↑↑ = A↑ and A↓↓ = A↓.

Now consider a positive operator T : E → F where F is Dedekind com-
plete. Since ST is a Boolean algebra, it is closed under finite suprema and
infima. In particular, all “ups and downs” of ST (for instance (ST )� and
(ST )�↓) are likewise closed under finite suprema and infima (and hence they
are also directed upward and downward). As we shall see, a finite process of
“ups and downs” of simple components suffices to generate all components
of a positive operator.

But first, we shall approximate pointwise an arbitrary component of a
positive operator T by a component of (ST )�↓ as follows.

Lemma 2.4. Let T : E → F be a positive operator between two Riesz spaces
where E has the principal projection property and F is Dedekind complete.
If S is a component of T , then given x ∈ E+ and 0 ≤ f ∈ F∼

n , there exists
a component C ∈ (ST )�↓ satisfying

〈
f, |S − C|x

〉
= 0.

Proof. Fix x ∈ E+ and 0 ≤ f ∈ F∼
n . Then for each n ∈ N there exists

(according to Theorem 2.3) some Bn ∈ ST with 〈f, |S − Bn|x〉 < 2−n. For
each n put Cn =

∨∞
j=nBj , and note that in view of

∨n+i
j=nBj ↑i Cn we have

{Cn} ⊆ (ST )�. Now from the inequality

∣∣∣S −
n+i∨
j=n

Bj

∣∣∣ =
∣∣∣
n+i∨
j=n

(Bj − S)
∣∣∣ ≤

n+i∑
j=n

∣∣S − Bj

∣∣ ,
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we see that
〈
f,
∣∣∣S −

n+i∨
j=n

Bj

∣∣∣x
〉
≤

∞∑
j=n

〈
f, |S − Bj |x

〉
< 21−n .

The latter combined with
∣∣S−∨n+i

j=n Bj

∣∣−→o |S−Cn| and the fact that f ∈ F∼
n

shows that for each n we have〈
f, |S − Cn|x

〉
≤ 21−n . (�)

Finally, let Cn ↓ C. Then clearly C ∈ (ST )�↓ (of course, C = lim sup Cn).
On the other hand, in view of |S − Cn|−→o |S − C| and f ∈ F∼

n , it follows
from (�) that

〈
f, |S − C|x

〉
= 0, and the proof is finished.

A better “pointwise” approximation by components of (ST )�↓ is achieved
in the next lemma.

Lemma 2.5. Let T : E → F be a positive operator between two Riesz spaces,
where E has the principal projection property and F is Dedekind complete
such that F∼

n separates the points of F . If S is a component of T , then given
x ∈ E+ and 0 ≤ f ∈ F∼

n there exists a component C ∈ (ST )�↓ with

0 ≤ C ≤ S and 〈f, Cx〉 = 〈f, Sx〉 .

Proof. Fix x ∈ E+ and 0 ≤ f ∈ F∼
n , and let

D =
{
C ∈ (ST )�↓ :

〈
f, |S − C|x

〉}
.

By Lemma 2.4 the set D is nonempty, and an easy argument shows that
D is directed downward. Let D ↓ C0. Clearly, C0 ∈ (ST )�↓↓ = (ST )�↓, and
hence

〈
f, |S − C0|x

〉
= 0, i.e., C0 ∈ D.

We claim that 0 ≤ C0 ≤ S. To this end, let 0 ≤ g ∈ F∼
n and y ∈ E+.

By Lemma 2.4, there is some R ∈ (ST )�↓ with
〈
f + g, |S − R|(x + y)

〉
= 0.

This implies R ∈ D, and so C0 ≤ R. On the other hand, we have〈
g, (C0 − S)+y

〉
≤
〈
f + g, |R − S|(x + y)

〉
= 0 .

Since 0 ≤ g ∈ F∼
n and y ∈ E+ are arbitrary, we see that (C0 − S)+ = 0.

Hence, 0 ≤ C0 ≤ S, and clearly 〈f, C0x〉 = 〈f, Sx〉 holds.

We now come to the main result of this section that characterizes the
components of a positive operator. It is due to B. de Pagter [159] and has
its origins in the work of H. Leinfelder [111]. However, the proof as well as
the approach in this section are due to the authors [14].

Theorem 2.6 (de Pagter). If T : E → F is a positive operator between two
Riesz spaces where E has the principal projection property and F is Dedekind
complete such that F∼

n separates the points of F , then

CT = (ST )�↓↑ = (ST )�↑↓ .
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Proof. Let S ∈ CT be fixed, and let

B =
{
C ∈ (ST )�↓ : 0 ≤ C ≤ S

}
.

Clearly, B ↑ holds, and by Lemma 2.5 we know that B �= �©. Let B ↑ C0,
and note that C0 ∈ (ST )�↓↑. Also, observe that 0 ≤ C0 ≤ S holds. On the
other hand, if 0 ≤ f ∈ F∼

n and x ∈ E+ are arbitrary, then by Lemma 2.5
there exists some C ∈ B with 〈f, Cx〉 = 〈f, Sx〉. Taking into account that
0 ≤ C ≤ C0 ≤ S must be true, we see that 〈f, C0x〉 = 〈f, Sx〉 also must be
the case, and from this we see that C0 = S. Thus, S = C0 ∈ (ST )�↓↑ holds,
and so CT = (ST )�↓↑. For the other equality note that a component S of T
satisfies S ∈ (ST )�↓↑ if and only if T − S ∈ (ST )�↑↓.

We saw previously that a pair of order projections P on E and Q on F
gives rise to the component QTP for each positive operator T . Thus, an
abundance of order projections on E and F guarantees that each positive
operator has an abundance of components. However, as we shall see next,
even without nontrivial order projections on E a positive operator always
has a plethora of components.

By Theorem 1.28, if F is Dedekind complete, then for each ideal A of
E and each positive operator T : E → F a new positive operator TA can be
defined via the formula

TA(x) := sup
{
T (y) : y ∈ A and 0 ≤ y ≤ x

}
, x ∈ E+ .

As we shall see next, TA is actually a component of T .
Now let the ideal A be fixed. Then a mapping T �→ TA is defined from

L+
b (E, F ) to L+

b (E, F ). Since for each x ∈ E+ the set {y ∈ A : 0 ≤ y ≤ x
}

is directed upward, it is not difficult to see that

(S + T )A(x) = SA(x) + TA(x)

holds for all S, T ∈ L+
b (E, F ) and all x ∈ E+. This shows, of course, that

the mapping T �→ TA is additive on L+
b (E, F ), and thus, by Theorem 1.10,

it is extendable to a positive operator from Lb(E, F ) to Lb(E, F ).
Remarkably, the positive operator T �→ TA is an order projection on

Lb(E, F ). The details follow.

Theorem 2.7. If F is Dedekind complete and A is an ideal of E, then the
operator T �→ TA, from Lb(E, F ) to Lb(E, F ), is an order projection.

In particular, if T : E → F is a positive operator, then TA is a compo-
nent of T for each ideal A of E.

Proof. The inequality 0 ≤ TA ≤ T for each T ∈ L+
b (E, F ) shows that the

operator T �→ TA is bounded by the identity operator of Lb(E, F ). Also, in
view of TA = T on A, it follows that (TA)A = TA holds. Thus, statement (2)
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of Theorem 1.44 is true and shows that the operator T �→ TA is an order
projection.

So far, we have seen that the elementary components of a positive oper-
ator are the building blocks for all components. In turn, we shall show next
that the components of a positive operator are the building blocks for all
positive operators dominated by the operator. To do this, we need to recall
a few basic facts from the theory of Riesz spaces.

Consider a Riesz space E and a vector 0 < x ∈ E. An x-step function
is any vector s ∈ E for which there exist pairwise disjoint components
x1, . . . , xn of x with x1 + · · ·+xn = x and real numbers α1, . . . , αn satisfying

s =
n∑

i=1

αixi .

(This last expression is referred to as representation of s as an x-step func-
tion.) Clearly, every component of x is an x-step function. Also, it is easy
to see that every x-step function belongs to the ideal generated by x. Now
if u and v are x-step functions with representations

u =
n∑

i=1

αixi and v =
m∑

j=1

βjyj ,

then

u =
n∑

i=1

m∑
j=1

αi(xi ∧ yj) and v =
n∑

i=1

m∑
j=1

βj(xi ∧ yj)

are also representations of u and v as x-step functions. In particular, it
follows that:

u + v =
n∑

i=1

m∑
j=1

(αi + βj)(xi ∧ yj) .

λu =
n∑

i=1

λαixi .

|u| =
n∑

i=1

|αi|xi .

Therefore, the collection of all x-step functions is a Riesz subspace of E.
The term “step function” is justified by the following example from the

theory of integration. Let E = L1[0, 1] and consider the constant function
1. It is easy to see that the components of 1 are precisely the characteristic
functions of the Lebesgue measurable subsets of [0, 1]. Consequently, a 1-
step function as defined above is exactly a step function in the sense of the
theory of integration.



2.1. The Components of a Positive Operator 87

When E has the principal projection property, every vector in the ideal
generated by a vector x > 0 can be “approximated uniformly” by x-step
functions. This can be seen from the following fundamental spectral theorem
of H. Freudenthal [67].

Theorem 2.8 (Freudenthal’s Spectral Theorem). Let E be a Riesz space
with the principal projection property and let 0 < x ∈ E. Then for every
y ∈ Ex there exists a sequence {un} of x-step functions satisfying

0 ≤ y − un ≤ 1
nx for each n and un ↑ y .

Proof. Without loss of generality we can assume that 0 < y ≤ x holds.
For each 0 ≤ α ≤ 1 denote by Pα the order projection of E onto the band
generated by (y − αx)+. The family {Pα : 0 ≤ α ≤ 1

}
of order projections

has the following properties:

(a) P0 = Py and P1 = 0.
(b) If 0 ≤ α ≤ β ≤ 1, then 0 ≤ Pβ ≤ Pα ≤ I.
(c) If 0 ≤ α ≤ β ≤ 1 holds, then

α(Pα − Pβ)x ≤ (Pα − Pβ)y ≤ β(Pα − Pβ)x .

Indeed, from

(Pα − Pβ)y − α(Pα − Pβ)x = (I − Pβ)Pα(y − αx)

= (I − Pβ)(y − αx)+ ≥ 0 ,

it follows that α(Pα − Pβ)x ≤ (Pα − Pβ)y. Also, from

(Pα − Pβ)y − β(Pα − Pβ)x = Pα(y − βx) − Pβ(y − βx)

= Pα(y − βx) − (y − βx)+

≤ Pα(y − βx)+ − (y − βx)+ ≤ 0 ,

we see that (Pα − Pβ)y ≤ β(Pα − Pβ)x.

(d) If 0 ≤ α ≤ β ≤ α1 ≤ β1 ≤ 1 holds, then (Pα−Pβ)x and (Pα1−Pβ1)x
are two disjoint components of x.

To see this, note that

0 ≤ (Pα − Pβ)x ∧ (Pα1 − Pβ1)x ≤ (x − Pβx) ∧ Pβx = 0 ,

and

0 ≤ (Pα − Pβ)x ∧
[
x − (Pα − Pβ)x

]
≤ Pαx ∧ (x − Pαx) + (x − Pβx) ∧ Pβx = 0 .

Now let ε > 0. Since the collection of all x-step functions is a Riesz
subspace, it is enough to establish the existence of some x-step function u
with 0 ≤ y − u ≤ εx. To this end, let 0 = α0 < α1 < · · · < αn = 1 be a
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partition of [0, 1] with mesh less than ε. Put xi = (Pαi−1 − Pαi)x for each
i = 1, . . . , n, and note that x1 + · · · + xn ≤ x and that xi ∧ xj = 0 holds for
i �= j. On the other hand, using (c) above, it is easy to see that the x-step
function u =

∑n
i=1 αi−1xi satisfies

u =
n∑

i=1

αi−1xi ≤
n∑

i=1

(
Pαi−1 − Pαi

)
y = y ≤

n∑
i=1

αixi

≤
n∑

i=1

(αi−1 + ε)xi ≤ u + εx ,

and so 0 ≤ y − u ≤ εx holds, as desired.

For a number of interesting applications of Freudenthal’s spectral theo-
rem the reader is referred to Chapter 6 of the book by W. A. J. Luxemburg
and A. C. Zaanen [132].

For positive operators, the following special case of Theorem 2.8 will be
very useful. It indicates that a property of a positive operator is inherited by
operators it dominates whenever its components inherit the same property.

Theorem 2.9. Let S, T : E → F be positive operators between two Riesz
spaces with F Dedekind complete. If 0 ≤ S ≤ T holds, then for each ε > 0
there exist positive real numbers α1, . . . , αn and components C1, . . . , Cn of
T satisfying

0 ≤ S −
n∑

i=1

αiCi ≤ εT .

In particular, there exists a sequence {Sn} of T -step functions satisfying

0 ≤ S − Sn ≤ 1
nT for each n and 0 ≤ Sn ↑ S .

The preceding theorem combined with Theorem 2.3 shows that the fol-
lowing approximation theorem also is true.

Theorem 2.10. Let E be a Riesz space with the principal projection prop-
erty, let F be Dedekind complete, and let S, T : E → F be two positive oper-
ators such that 0 ≤ S ≤ T . Then, given x ∈ E+, 0 ≤ f ∈ F∼

n , and ε > 0,
there exist order projections P1, . . . , Pn on E, order projections Q1, . . . , Qn

on F and positive real numbers α1, · · · , αn such that
〈
f,
∣∣∣S −

n∑
i=1

αiQiTPi

∣∣∣x
〉

< ε .

In the sequel, we shall use the following notation: If Q = (Q1, . . . , Qn)
is an n-tuple of order projections on F , P = (P1, . . . , Pn) is an n-tuple of
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order projections on E, and T : E → F is a positive operator, then

TQ,P :=
n∨

i=1

QiTPi .

Our next theorem characterizes the operators that lie in the band gen-
erated by another operator and is due to the authors [14].

Theorem 2.11 (Aliprantis–Burkinshaw). Let E be a Riesz space with the
principal projection property, and let F be Dedekind complete such that F∼

n

separates the points of F . Then for two positive operators S, T : E → F the
following statements are equivalent:

(1) T is in the principal band generated by S in Lb(E, F ).

(2) Given x ∈ E+, 0 ≤ f ∈ F∼
n , and ε > 0, there exists some δ > 0

such that
〈
f, SQ,Px

〉
< δ implies

〈
f, TQ,Px

〉
< ε.

(3) Given x ∈ E+, 0 ≤ f ∈ F∼
n , and ε > 0, there exists some δ > 0

such that
〈
f, (S − SQ,P)x

〉
< δ implies

〈
f, (T − TQ,P)x

〉
< ε.

Proof. In view of the identity

S −
n∨

i=1

QiSPi =
n∧

i=1

[
(I − Qi)S ∨ Qi(I − Pi)

]
,

it is easy to see that (2) and (3) are equivalent statements. We shall establish
next the equivalence of (1) and (2).

(1) =⇒ (2) Assume that T is in the band generated by S. Then by
Theorem 1.47 we have T ∧ nS ↑ T . Let x ∈ E+, 0 ≤ f ∈ F∼

n , and ε > 0 be
fixed.

From [T ∧ nS](x) ↑ T (x) we see that there exists some k satisfying〈
f, (T − T ∧ kS)x

〉
< ε. Now observe that whenever P = (P1, . . . , Pn) and

Q = (Q1, . . . , Qn) are n-tuples of order projections on E and F , respectively,
then we have

TQ,P =
n∨

i=1

QiTPi =
n∨

i=1

Qi

[
(T − T ∧ kS) + T ∧ kS

]
Pi

≤
n∨

i=1

Qi(T − T ∧ kS)Pi + k

n∨
i=1

QiSPi ≤ T − T ∧ kS + kSQ,P ,

and so〈
f, TQ,Px

〉
≤
〈
f, (T − T ∧ kS)x

〉
+ k
〈
f, SQ,Px

〉
< ε + k

〈
f, SQ,Px

〉
.

In particular, if
〈
f, SQ,Px

〉
< δ = ε

k , then
〈
f, TQ,Px

〉
< 2ε, and the conclu-

sion follows.
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(2) =⇒ (1) Write T = T1 + T2, where T1 is in the band generated by S
and T2 ⊥ S. It is enough to show that T2 = 0.

To this end, let x ∈ E+, 0 ≤ f ∈ F∼
n , and ε > 0 be fixed. Choose

0 < δ < ε so that statement (2) holds. Also, by Theorem 1.51 there exist
pairwise disjoint elements x1, . . . , xn of E+ with x1 + · · · + xn = x and〈
f,
∑n

i=1 Sxi ∧ T2xi

〉
< δ. From 0 ≤ T2 ≤ S + T2 and Lemma 2.2, it follows

that there exist pairwise disjoint order projections P1, . . . , Pn on E and order
projections Q1, . . . , Qn on F such that

∣∣∣T2 −
n∑

i=1

Qi(T2 + S)Pi

∣∣∣x ≤
n∑

i=1

T2xi ∧ Sxi .

Next, recall that in a Riesz space u ⊥ v implies |u| + |v| = |u − v|; see
Theorem 1.7. Taking into account T2 ⊥ S, the last observation yields

∣∣∣T2 −
n∑

i=1

QiT2Pi

∣∣∣+
∣∣∣

n∑
i=1

QiSPi

∣∣∣ =
∣∣∣T2 −

n∑
i=1

Qi(T2 + S)Pi

∣∣∣ .

By the above, we have
〈
f,
∑n

i=1 QiSPix
〉

< δ, and so
〈
f,
∑n

i=1QiTPix
〉

< ε.
Therefore,

〈
f, T2x

〉
≤
〈
f,
(
T2 −

n∑
i=1

QiT2Pi

)
x
〉

+
〈
f,

n∑
i=1

QiTPix
〉

< δ + ε < 2ε .

Since 0 ≤ f ∈ F∼
n and ε > 0 are arbitrary, it follows that T2 = 0, and the

proof is finished.

The final result of this section presents a formula for the order projection
onto the band generated by a positive operator and is due to the authors [14].

Theorem 2.12 (Aliprantis–Burkinshaw). Let S : E → F be a positive oper-
ator between two Riesz spaces, where E has the principal projection property
and F is Dedekind complete such that F∼

n separates the points of F . If P
denotes the order projection of Lb(E, F ) onto the band generated by S, then
for each x ∈ E+, each 0 ≤ f ∈ F∼

n , and each positive operator T : E → F ,
we have 〈

f,PTx
〉

= sup
ε > 0

inf
{〈

f, TQ,Px
〉
:
〈
f, (S − SQ,P)x

〉
< ε
}

.

Proof. Let T : E → F be a positive operator, and let 0 ≤ f ∈ F∼
n and

x ∈ E+. Put

r = sup
ε > 0

inf
{〈

f, TQ,Px
〉
:
〈
f, (S − SQ,P)x

〉
< ε
}

,

and for simplicity write R = PT .
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Fix ε > 0. Since (T − R) ⊥ S and 0 ≤ S ≤ S + (T − R) for each
0 < δ < ε, there exists (by Lemma 2.2) order projections P1, . . . , Pn on E
and other projections Q1, . . . , Qn on F such that:

(a) PiPj = 0 for i �= j.

(b) P1x + · · · + Pnx = x.

(c)
〈
f,
∣∣S −

∑n
i=1 Qi

[
S + (T − R)

]
Pi

∣∣x〉
=
〈
f,
(
S −
∑n

i=1 QiSPi

)
x
〉

+
〈
f,
∑n

i=1 Qi(T − R)Pix
〉

< δ.

Consequently, we have

inf
{〈

f, TQ,Px
〉
:
〈
f,
(
S − SQ,P

)
x
〉

< ε
}

≤
n∑

i=1

〈
f, QiTPix

〉

≤
n∑

i=1

〈
f, Qi(T − R)Pix

〉
+

n∑
i=1

〈
f, RPix

〉

< δ +
〈
f, Rx

〉
holds for all 0 < δ < ε. This implies

inf
{〈

f, TQ,Px
〉
:
〈
f,
(
S − SQ,P

)
x
〉

< ε
}
≤ 〈f, Rx〉

for each ε > 0, and so r ≤ 〈f, Rx〉.
On the other hand, if ε > 0 is given, then by Theorem 2.11 there exists

some δ > 0 such that
〈
f,
(
S − SQ,P

)
x
〉

< δ implies
〈
f,
(
R − RQ,P

)
x
〉

< ε.
Thus, if

〈
f,
(
S − SQ,P

)
x
〉

< δ, then

〈f, Rx〉 =
〈
f,
(
R − RQ,P

)
x
〉

+ 〈f, RQ,Px〉
≤
〈
f,
(
R − RQ,P

)
x
〉

+ 〈f, TQ,Px〉
< ε +

〈
f, TQ,Px

〉
.

Therefore,

〈f, Rx〉 ≤ ε + inf
{〈

f, TQ,Px
〉
:
〈
f,
(
S − SQ,P

)
x
〉

< δ
}
≤ ε + r .

Since ε > 0 is arbitrary, we see that 〈f, Rx〉 ≤ r also holds, and therefore
r =
〈
f,PTx

〉
, as desired.

Exercises

1. If T : �2 → �2 is the shift operator, defined by

T (x1, x2, . . .) = (0, x1, x2, . . .) ,

then describe its components.
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2. If E is a Dedekind complete Riesz space, then show that the order projec-
tions of E are precisely the components of the identity operator. [Hint :
S2 ∧ (I − S)2 = S2 ∧ (I − 2S + S2) = S ∧ (I − S) + S2 − S. ]

3. Let A be an ideal in a Dedekind complete Riesz space. If B is the band
generated by A, then show that IA = PB .

4. Let E and F be two Riesz spaces with F Dedekind complete. If A is an
ideal of E, then show that the projection band B = (Ao)d (for notation see
Exercise 12 of Section 1.4) satisfies PB(T ) = TA for each T ∈ Lb(E,F ).

5. Let T : E → F be a positive operator between two Riesz spaces with F
Dedekind complete. If S is a simple component of T , then show that
there exists pairwise disjoint elementary components Q1TP1, . . . , QnTPn

such that

S = Q1TP1 + · · · + QnTPn .

6. Show that S ∈ (ST )�↓ if and only if T − S ∈ (ST )�↑ .

7. (de Pagter [159]) Recall that a linear functional f on a Riesz space is said
to be strictly positive whenever x > 0 implies f(x) > 0.

Let E be a Riesz space with the principal projection property, and let
F be Dedekind complete. Assume further that E has a weak order unit
and that F admits a strictly positive order continuous linear functional.
Then show that for each order continuous positive operator T : E → F
we have

CT = (ST )�↓ = (ST )�↑ .

8. Let S : E → F be a positive operator between two Riesz spaces, where E
has the principal projection property and F is Dedekind complete with
F∼

n separating the points of F . Let Q denote the order projection of
Lb(E,F ) onto the band disjoint from S (i.e., onto Bd

S). Then show that
for each x ∈ E+, each 0 ≤ f ∈ F∼

n , and each positive operator T : E → F
we have

〈
f,QTx

〉
= inf

ε>0
sup
{
〈f, TQ,Px〉 : 〈f, SQ,Px〉 < ε

}
.

9. Consider the Riesz space E = Lp[0, 1] with 0 < p < 1, and recall that
E∼ = {0}. If T : Lp[0, 1] → Lp[0, 1] is a positive operator, then show that
the Boolean algebra of components CT satisfies

CT = (ST )�↓ = (ST )�↑ .

[Hint : Replace the linear functionals in the proofs of Theorem 2.3 and
Lemma 2.4 by

ρ(u) =
∫ 1

0

|u(t)|
1+|u(t)| dt . ]
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2.2. Lattice Homomorphisms

In this section a special class of positive operators will be studied. These
are the operators that preserve the lattice operations, and they are known
as lattice (or Riesz ) homomorphisms.

Definition 2.13. An operator T : E → F between two Riesz spaces is said to
be a lattice (or Riesz) homomorphism whenever T (x∨y) = T (x)∨T (y)
holds for all x, y ∈ E.

Observe that every lattice homomorphism T : E → F is necessarily a
positive operator. Indeed, if x ∈ E+, then

T (x) = T (x ∨ 0) = T (x) ∨ T (0) =
[
T (x)
]+ ≥ 0

holds in F . Also, it is important to note that the range of a lattice homo-
morphism is a Riesz subspace.

The elementary characterizations of lattice homomorphisms are pre-
sented next.

Theorem 2.14. For an operator T : E → F between two Riesz spaces the
following statements are equivalent.

(1) T is a lattice homomorphism.

(2) T (x+) = (Tx)+ for all x ∈ E.

(3) T (x ∧ y) = T (x) ∧ T (y) for all x, y ∈ E.

(4) If x ∧ y = 0 in E, then T (x) ∧ T (y) = 0 holds in F .

(5) T (|x|) = |T (x)| for all x ∈ E.

Proof. (1) =⇒ (2) Obvious.

(2) =⇒ (3) Note that

T (x ∧ y) = T
(
x − (x − y)+

)
= T (x) − T (x − y)+

= T (x) − (Tx − Ty)+ = T (x) ∧ T (y) .

(3) =⇒ (4) If x ∧ y = 0, then T (x) ∧ T (y) = T (x ∧ y) = T (0) = 0.

(4) =⇒ (5) In view of x+ ∧ x− = 0, we have
∣∣T (x)| =

∣∣T (x+) − T (x−)
∣∣ = T (x+) ∨ T (x−) − T (x+) ∧ T (x−)

= T (x+) ∨ T (x−) = T (x+) + T (x−)

= T (x+ + x−) = T
(
|x|
)
.
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(5) =⇒ (1) Observe that

T (x ∨ y) = T
(

1
2 [x + y + |x− y|]

)
= 1

2

[
T (x) + T (y) + T (|x− y|)

]
= 1

2

[
T (x) + T (y) + |T (x) − T (y)|

]
= T (x) ∨ T (y) ,

and the proof is finished.

Two immediate consequences of the preceding result are the following.

(a) Every order projection is an order continuous lattice homomor-
phism.

(b) The kernel of every lattice homomorphism is an ideal.1

Also, combining Theorem 1.10 and Theorem 2.14, we see that a mapping
T : E+ → F+ extends to a (unique) lattice homomorphism from E to F if
and only if T is additive on E+ and x ∧ y = 0 implies T (x) ∧ T (y) = 0.

A lattice homomorphism which is in addition one-to-one is referred to as
a lattice (or Riesz) isomorphism. Two Riesz spaces E and F are called
Riesz (or lattice) isomorphic whenever there exists a lattice isomorphism
from E onto F . If two Riesz spaces E and F are lattice isomorphic, then
from the Riesz space point of view E and F can be considered as identical.

Among the positive operators that are onto, the lattice isomorphisms
are characterized as follows.

Theorem 2.15. Assume that an operator T : E → F between two Riesz
spaces is one-to-one and onto. Then T is a lattice isomorphism if and only
if T and T−1 are both positive operators.

Proof. If T is a lattice isomorphism, then clearly T and T−1 are both
positive operators. For the converse assume that T and T−1 are both positive
operators and that x, y ∈ E. From x ≤ x ∨ y and y ≤ x ∨ y, it follows
T (x) ≤ T (x ∨ y) and T (y) ≤ T (x ∨ y) holds, and so

T (x) ∨ T (y) ≤ T (x ∨ y) . (�)

Similarly, we see that T−1(u)∨T−1(v) ≤ T−1(u∨v) for all u, v ∈ F . For
u = T (x) and v = T (y) the last inequality yields x∨ y ≤ T−1

(
T (x)∨T (y)

)
,

and by applying T it follows that T (x ∨ y) ≤ T (x) ∨ T (y). This combined
with (�) implies T (x ∨ y) = T (x) ∨ T (y) so that the operator T is a lattice
homomorphism.

Our next goal is to investigate the relationship between lattice homomor-
phisms and interval preserving operators. An operator T : E → F between
two Riesz spaces is said to be interval preserving whenever T is a positive

1Recall that if T : V → W is an operator between vector spaces, then its kernel
is the vector subspace of V defined by Ker (T ) :=

{
x ∈ V : T (x) = 0

}
= T−1

(
{0}
)
.
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operator and T [0, x] = [0, Tx] holds for each x ∈ E+. The concept of an
interval preserving operator first appeared (with a different terminology) in
the works of D. Maharam [134, 135].

Note that the range of an interval preserving operator is an ideal. The
converse of the latter is, of course, false. For instance, the positive operator
T : R

2 → R
2, defined by T (x, y) = (x + y, y), is onto, and hence its range is

an ideal. However, 0 ≤ (0, 1) ≤ (2, 1) = T (1, 1) holds, and there is no vector
0 ≤ (x, y) ≤ (1, 1) satisfying T (x, y) = (0, 1).

The concepts of interval preserving operators and lattice homomor-
phisms are independent. It is easy to see that every positive linear functional
is interval preserving. Thus, for instance, φ(f) =

∫ 1
0 f(t) dt, from C[0, 1] to

R, is interval preserving but fails to be a lattice homomorphism. On the
other hand, the operator T : C[0, 1] → L1[0, 1] defined by

[Tf ](t) = tf(t) , t ∈ [0, 1] ,

is a lattice homomorphism, which is not interval preserving. To see the
latter, note first that 0 ≤ t

∣∣sin(1t
)∣∣ ≤ t = [T1](t) holds for all t ∈ [0, 1], where

1 denotes the constant function one. If T were interval preserving, then
there should exist some f ∈ C[0, 1] with 0 ≤ f ≤ 1 and tf(t) = t

∣∣sin(1t
)∣∣

for all t ∈ [0, 1]. However, this implies that limt→0+

∣∣sin(1t
)∣∣ exists, which is

absurd.
The first duality property between lattice homomorphisms and inter-

val preserving operators is included in the next theorem and is due to
W. Arendt [26].

Theorem 2.16 (Arendt). For a Dedekind complete Riesz space F and a
positive operator R : E → G between two Riesz spaces we have the following.

(1) If R is a lattice homomorphism, then the operator T �→ TR from
Lb(G, F ) to Lb(E, F ) is interval preserving.

(2) If R is interval preserving, then the operator T �→ TR from
Lb(G, F ) to Lb(E, F ) is a lattice homomorphism.

Proof. (1) Clearly, T �→ TR from Lb(G, F ) to Lb(E, F ) is a positive oper-
ator. Fix 0 ≤ T ∈ Lb(G, F ), and let 0 ≤ S ∈ Lb(E, F ) satisfy 0 ≤ S ≤ TR.
We have to show the existence of some 0 ≤ T1 ≤ T with T1R = S.

To see this, define the operator T1 on the range of R by T1(Rx) = Sx,
and note that T1 is well defined. Indeed, if Rx = Ry holds, then it follows
from

|Sx − Sy| ≤ S|x − y| ≤ TR|x − y| = T |Rx − Ry| = 0

that Sx = Sy. On the other hand, note that for each x ∈ E we have

T1(Rx) = Sx ≤ Sx+ ≤ TRx+ = T (Rx)+
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and that p(y) = T (y+) (y ∈ G) is a sublinear mapping. Consequently, by
the Hahn–Banach Theorem 1.25, T1 has a linear extension to all of G (which
we denote by T1 again) satisfying T1(y) ≤ T (y+) for all y ∈ G. Clearly,
T1 ≤ T holds, and moreover, if y ∈ G+, then

−T1(y) = T1(−y) ≤ T
(
(−y)+

)
= T (0) = 0

so that T1(y) ≥ 0. That is, T1 is also a positive operator. Therefore,
0 ≤ T1 ≤ T holds, and by our construction T1R = S, as desired.

(2) Let x ∈ E+, and let S, T : G → F be two order bounded operators.
Since [0, Rx] = R[0, x] holds, it is easy to see that y, z ∈ [0, Rx] satisfy
y + z = Rx if and only if there exist u, v ∈ [0, x] with u + v = x, y = Ru,
and z = Rv. Thus,

[SR ∨ TR](x) = sup
{
SR(u) + TR(v) : u, v ∈ E+ and u + v = x

}
= sup

{
S(y) + T (z) : y, z ∈ G+ and y + z = Rx

}
= (S ∨ T )R(x) ,

and so SR∨TR = (S∨T )R holds in Lb(E, F ). This shows that the operator
T �→ TR is a lattice homomorphism, and the proof is finished.

In the previous theorem we considered the lattice behavior of the oper-
ator T �→ TR involving composition on the right. The next theorem deals
with the lattice behavior of the operator T �→ RT involving composition on
the left and is due to C. D. Aliprantis, O. Burkinshaw, and P. Kranz [18].

Theorem 2.17. For a positive operator R : G → F between two Dedekind
complete Riesz spaces and an arbitrary Riesz space E we have the following.

(1) If R is an order continuous lattice homomorphism, then the oper-
ator T �→ RT , from Lb(E, G) to Lb(E, F ), is a lattice homomor-
phism.

(2) If the operator T �→ RT , from Lb(E, G) to Lb(E, F ), is a lattice
homomorphism and F∼ �= {0}, then R is a lattice homomorphism.
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Proof. (1) Let S, T ∈ Lb(E, G). Then, using the fact that R is an order
continuous lattice homomorphism, Theorem 1.21 yields

R(S ∨ T )(x) = R
(
sup
{ n∑

i=1

S(xi) ∨ T (xi) : xi ∈ E+ and
n∑

i=1

xi = x
})

= sup
{

R
( n∑

i=1

S(xi) ∨ T (xi)
)

: xi ∈ E+ and
n∑

i=1

xi = x
}

= sup
{ n∑

i=1

RS(xi) ∨ RT (xi) : xi ∈ E+ and
n∑

i=1

xi = x
}

= [RS ∨ RT ](x)

for each x ∈ E+. Thus, R(S ∨ T ) = RS ∨ RT holds, and so T �→ RT is a
lattice homomorphism.

(2) To see that R is a lattice homomorphism, fix some 0 < f ∈ F∼, and
let x ∧ y = 0 in G. Then from Theorem 1.72 we see that

f ⊗ (Rx ∧ Ry) = (f ⊗ Rx) ∧ (f ⊗ Ry) = R[f ⊗ x] ∧ R[f ⊗ y]

= R[(f ⊗ x) ∧ (f ⊗ y)] = R[f ⊗ (x ∧ y)] = 0 .

This easily implies Rx ∧ Ry = 0, and so R is a lattice homomorphism.

Let T : E → F be an order bounded operator between two Riesz spaces.
By Theorem 1.73 we know that the (order) adjoint operator T ′ : F∼ → E∼

is order bounded and order continuous. Thus, the adjoint operator defines
an operator (transformer) T �→ T ′ from Lb(E, F ) to Lb(F∼, E∼). Clearly,
T �→ T ′ is a positive operator. Also by restricting each T ′ to F∼

n , we can
consider T �→ T ′ as a positive operator from Lb(E, F ) to Lb(F∼

n , E∼). In
this case, T �→ T ′ is an order continuous lattice homomorphism. The details
follow.

Theorem 2.18. Let E and F be two Riesz spaces with F Dedekind complete.
Then the positive operator T �→ T ′, from Lb(E, F ) to Lb(F∼

n , E∼), is an
order continuous lattice homomorphism.

Proof. For the order continuity of T �→ T ′, let Tα ↓ 0 in Lb(E, F ). Then
for each 0 ≤ f ∈ F∼

n and x ∈ E+ we have
〈
T ′

αf, x
〉

= 〈f, Tαx〉 = f(Tαx) ↓ 0 .

Therefore T ′
αf ↓ 0 holds in E∼ for each 0 ≤ f ∈ F∼

n . This shows that T ′
α ↓ 0

holds in Lb(F∼
n , E∼), and thus the positive operator T �→ T ′, from Lb(E, F )

to Lb(F∼
n , E∼), is order continuous.
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Now from Theorem 1.76 we see that |T ′| = |T |′ holds in Lb(F∼
n , E∼) for

each T ∈ Lb(E, F ). This shows that T �→ T ′, from Lb(E, F ) to Lb(F∼
n , E∼),

is a lattice homomorphism, and the proof is finished.

The adjoint of an interval preserving operator is always a lattice homo-
morphism.

Theorem 2.19. If T : E → F is an interval preserving operator between
two Riesz spaces, then T ′ : F∼ → E∼ is a lattice homomorphism.

Proof. Note first that T ′f = f ◦ T holds for all f ∈ F∼. Now by part (2)
of Theorem 2.16 the operator f �→ f ◦ T = T ′f is a lattice homomorphism.
Therefore, if f ∧ g = 0 holds in F∼, then

T ′f ∧ T ′g = (f ◦ T ) ∧ (g ◦ T ) = (f ∧ g) ◦ T = 0

holds in E∼. Therefore, T ′ is a lattice homomorphism.

The next theorem presents another duality relationship between lattice
homomorphisms and interval preserving operators. This result appeared
first in the paper of J. Kim [97], whereas the theorem is attributed to
T. Andô by H. P. Lotz [118].

Theorem 2.20 (Kim–Andô). If F∼ separates the points of F , then a
positive operator T : E → F is a lattice homomorphism if and only if
T ′ : F∼ → E∼ is interval preserving.

Proof. Note that T ′ : F∼ → E∼ satisfies T ′f = f ◦T for all f ∈ F∼. Thus,
if T is a lattice homomorphism, then by part (1) of Theorem 2.16 we see
that the positive operator f �→ f ◦ T = T ′f is interval preserving.

For the converse assume that T ′ is interval preserving, and let x ∈ E. If
0 ≤ f ∈ F∼, then from Theorem 1.23 we see that

f
(
(Tx)+

)
= max

{
g(Tx) : g ∈ F∼ and 0 ≤ g ≤ f

}
= max

{
[T ′g](x) : g ∈ F∼ and 0 ≤ g ≤ f

}
= max

{
h(x) : h ∈ E∼ and 0 ≤ h ≤ T ′f

}
= [T ′f ](x+) = f

(
T (x+)

)
.

Since F∼ separates the points of F , it follows that (Tx)+ = T (x+) holds for
all x ∈ E, and so T is a lattice homomorphism.

Now we turn our discussion to σ-order continuous lattice homomor-
phisms. The first result characterizes the onto lattice homomorphisms that
are σ-order continuous. Recall that an ideal A is called a σ-ideal whenever
{xn} ⊆ A and 0 ≤ xn ↑ x imply x ∈ A.
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Theorem 2.21. For an onto lattice homomorphism T : E → F we have the
following.

(1) T is σ-order continuous if and only if its kernel Ker (T ) is a
σ-ideal of E.

(2) T is order continuous if and only if Ker (T ) is a band of E.

Proof. We shall establish the validity of (1) and leave the proof of (2) for
the reader. Start by observing that the kernel of a lattice homomorphism is
always an ideal, which, in case the lattice homomorphism is σ-order contin-
uous, is also a σ-ideal.

Now assume that Ker (T ) =
{
x ∈ E : T (x) = 0

}
is a σ-ideal, and that

xn ↓ 0 holds in E. Let 0 ≤ y ≤ T (xn) hold in F for each n. Since T is an
onto lattice homomorphism, there exists some z ∈ E+ with T (z) = y. Next,
note that 0 ≤ (z − xn)+ ↑ z holds in E and that

T (z − xn)+ = (Tz − Txn)+ = (y − Txn)+ = 0

implies that (z − xn)+ ∈ Ker (T ) for each n. Since Ker (T ) is a σ-ideal, z
must belong to Ker (T ), and so y = T (z) = 0. Thus, T (xn) ↓ 0 holds in F ,
and the proof of (1) is finished.

The lattice homomorphisms are closely related to ideals. For every ideal
A of a Riesz space E the canonical projection of E onto the Riesz space
E/A is a lattice homomorphism.

To see this, let us recall first why E/A is a Riesz space. The equivalence
class determined by x in E/A will be denoted by ẋ = x+A. Clearly, x �→ ẋ,
from E to E/A, is a linear operator called the canonical projection of E
onto E/A. In E/A we introduce a relation ≥ by letting ẋ ≥ ẏ whenever
there exist x1 ∈ ẋ (i.e., x1 −x ∈ A) and y1 ∈ ẏ with x1 ≥ y1. The relation
≥ satisfies the following properties:

(1) ẋ ≥ ẋ for all x ∈ E.
(2) ẋ ≥ ẏ and ẏ ≥ ẋ imply ẋ = ẏ.

To see this, pick x1, x2 ∈ ẋ and y1, y2 ∈ ẏ with x1 ≥ y1 and y2 ≥ x2.
Since A is an ideal, it follows from

0 ≤ x1 − y1 ≤ (x1 − y1) + (y2 −x2) = (x1 −x2) + (y2 − y1) ∈ A + A = A

that x1 − y1 ∈ A. Therefore, ẋ− ẏ = ẋ1 − ẏ1 = (x1 − y1)̇ = 0, and so ẋ = ẏ.

(3) ẋ ≥ ẏ and ẏ ≥ ż imply ẋ ≥ ż.

Indeed, if x1 ∈ ẋ, y1, y2 ∈ ẏ, and z1 ∈ ż satisfy x1 ≥ y1 and y2 ≥ z1,
then we have

z1 ≤ y2 ≤ y2 + (x1 − y1) = x1 + (y2 − y1) .
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Since x1 + (y2 − y1) ∈ ẋ, we see that ẋ ≥ ż must hold.

(4) ẋ ≥ ẏ implies ẋ + ż ≥ ẏ + ż for all z ∈ E.

(5) ẋ ≥ ẏ implies αẋ ≥ αẏ for allα ≥ 0.

Consequently, E/A under the relation ≥ is an ordered vector space. In fact,
the quotient vector space E/A is itself a Riesz space.

Theorem 2.22. If A is an ideal of a Riesz space E, then the quotient vector
space E/A is a Riesz space and the canonical projection of E onto E/A is
a lattice homomorphism.

Proof. Let x ∈ E. From x ≤ x+ and 0 ≤ x+ we see that ẋ ≤ (x+)̇ and
0 ≤ (x+)̇ hold in E/A. On the other hand, assume ẋ ≤ ẏ and 0 ≤ ẏ in E/A.
Pick x1 ∈ ẋ, y1 ∈ ẏ, and y2 ∈ ẏ with x1 ≤ y1 and 0 ≤ y2. Then the relations

x = x1 + (x − x1) ≤ y1 ∨ y2 + (x − x1)+

= y2 + (y1 − y2)+ + (x − x1)+ ∈ y2 + A

and

y2 + (y1 − y2)+ + (x − x1)+ ≥ 0

imply x+ ≤ y2 + (y1 − y2)+ + (x − x1)+, which in turn guarantees that
(x+)̇ ≤ ẏ2 = ẏ. Therefore, (ẋ)+ = (x+)̇ holds in E/A. This establishes that
E/A is a Riesz space and that the canonical projection x �→ ẋ is a lattice
homomorphism.

According to Theorem 2.21, the canonical projection of E onto E/A is
σ-order continuous if and only if A is a σ-ideal. Similarly, the canonical
projection is order continuous if and only if A is a band.

When is E/A Archimedean? Before answering this question, we need
the concept of relative uniform convergence in Riesz spaces as introduced
by E. H. Moore [143]. A sequence {xn} in a Riesz space is said to be
relatively uniformly convergent to x whenever there exist some u > 0
and a sequence {εn} of real numbers with εn ↓ 0 such that |xn − x| ≤ εnu
holds for all n. A subset A of a Riesz space is said to be uniformly closed
whenever for each sequence {xn} ⊆ A that is relatively uniformly convergent
to some x we have x ∈ A.

We are now in the position to answer when E/A is Archimedean. The
result is due to W. A. J. Luxemburg and L. C. Moore, Jr. [127].

Theorem 2.23 (Luxemburg–Moore). Let A be an ideal of a (not neces-
sarily Archimedean) Riesz space E. Then the quotient Riesz space E/A is
Archimedean if and only if A is a uniformly closed ideal of E.



2.2. Lattice Homomorphisms 101

Proof. Assume first that E/A is Archimedean. Let {xn} ⊆ A converge
relatively uniformly to x. Pick u > 0 and εn ↓ 0 such that |xn − x| ≤ εnu
holds for each n. Since the canonical projection x �→ ẋ of E onto E/A is a
lattice homomorphism, it follows that

|ẋ| = |x|̇ ≤ |x − xn |̇ + |xn |̇ = |x − xn |̇ ≤ εnu̇

holds for all n. The Archimedeaness of E/A implies ẋ = 0, and so x ∈ A.
Therefore, A is a uniformly closed ideal.

For the converse assume that A is uniformly closed and that 0 ≤ nẋ ≤ ẏ
holds in E/A for each n. We can assume that 0 ≤ x ≤ y in E. Now let
xn =

(
x − 1

ny
)+, and note that ẋn =

(
ẋ − 1

n ẏ
)+ = 1

n(nẋ − ẏ)+ = 0 implies
{xn} ⊆ A. On the other hand, the inequality

|xn − x| =
∣∣(x − 1

ny
)+ − x+

∣∣ ≤ ∣∣(x − 1
ny
)
− x
∣∣ = 1

ny

shows that {xn} converges relatively uniformly to x. Since A is uniformly
closed, it follows that x ∈ A, and hence ẋ = 0. That is, E/A is an Archime-
dean Riesz space, and the proof is finished.

Since every σ-ideal in an Archimedean Riesz space E is uniformly closed,
the preceding theorem shows that for every σ-ideal A the Riesz space E/A
is Archimedean.

For the first time in our discussion we shall need the concept of the
Dedekind completion of an Archimedean Riesz space. So, let us pause to
discuss briefly this notion. A Dedekind complete Riesz space L is said to be
a Dedekind completion of the Riesz space E whenever E is Riesz isomor-
phic to a majorizing order dense Riesz subspace of L (which we identify with
E). Clearly, only Archimedean Riesz spaces can have Dedekind completions.
Also, any two Dedekind completions of a Riesz space are necessarily Riesz
isomorphic (why?). That is, the Dedekind completion of a Riesz space (if it
exists) is uniquely determined up to lattice isomorphism.

It is a classical result that every Archimedean Riesz space E has a De-
dekind completion, which we shall denote by Eδ. This result is stated next,
and we refer the reader for a proof to [132, p. 191], [189, p. 109], or [162,
p. 151].

Theorem 2.24. Every Archimedean Riesz space has a (unique) Dedekind
completion.

In other words, if E is an Archimedean Riesz space, then there exists
a Dedekind complete Riesz space Eδ (uniquely determined up to lattice
isomorphism) such that:

(a) E is Riesz isomorphic to a Riesz subspace of Eδ (which we identify
with E).
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(b) For each x ∈ Eδ we have

x = sup{y ∈ E : y ≤ x
}

= inf
{
z ∈ E : x ≤ z

}
.

It is interesting to know that there are Riesz spaces E with the property
that an arbitrary lattice homomorphism with domain E is automatically σ-
order continuous (or order continuous). These Riesz spaces were investigated
first by C. T. Tucker [184, 185, 186], and later by D. H. Fremlin [65, 66].

Definition 2.25 (Fremlin). A Riesz space E is said to have the σ-order
continuity property whenever every positive operator from E to an arbi-
trary Archimedean Riesz space is automatically σ-order continuous.

Similarly, E has the order continuity property whenever every posi-
tive operator from E to an arbitrary Archimedean Riesz space is automati-
cally order continuous.

The next result of C. T. Tucker [186] and D. H. Fremlin [65] character-
izes the σ-order continuity property. For its proof we shall need the following
simple property.

• If T : E → F is an order bounded operator between two Riesz spaces
with F Dedekind complete, then the null ideal of T is uniformly
closed.

Indeed, if {xn} ⊆ NT satisfies |x − xn| ≤ εnu with εn ↓ 0, the inequalities

0 ≤ |T |(|x|) = |T |
(
|x| − |xn|

)
≤ |T |

(
|x − xn|

)
≤ εn|T |u

easily imply that |T |(|x|) = 0.

Theorem 2.26 (Tucker–Fremlin). For a Riesz space E the following state-
ments are equivalent.

(1) E has the σ-order continuity property.
(2) Every lattice homomorphism from E to any Archimedean Riesz

space is σ-order continuous.
(3) Every uniformly closed ideal of E is a σ-ideal.

Proof. (1) =⇒ (2) Every lattice homomorphism is a positive operator, and
the desired conclusion follows.

(2) =⇒ (3) Let A be a uniformly closed ideal of E. Then by Theo-
rem 2.23 the Riesz space E/A is Archimedean. Since the canonical projec-
tion of E onto E/A is a lattice homomorphism, by our hypothesis it must
be σ-order continuous. Therefore, by Theorem 2.21 its kernel, i.e., the ideal
A, must be a σ-ideal.

(3) =⇒ (1) Let F be an Archimedean Riesz space, and let T : E → F be
a positive operator. Since F is an order dense Riesz subspace of its Dedekind
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completion F δ, we see that T : E → F is σ-order continuous if and only if
T : E → F δ is σ-order continuous. This means that we can assume without
loss of generality that F is Dedekind complete.

Now let S : E → F be an order bounded operator satisfying |S| ≤ T .
By the discussion preceding this theorem, NS is uniformly closed, and hence
by our assumption NS is a σ-ideal. Thus, the null ideal of every operator
in AT (the ideal generated by T in Lb(E, F )) is a σ-ideal, and consequently
by Theorem 1.61 the operator T is σ-order continuous.

Recall that a Riesz space E is said to have the countable sup property
whenever sup A exists in E, then there exists an at most countable subset
B of A with supB = sup A. A Riesz space has, of course, the countable
sup property if and only if 0 ≤ D ↑ x implies the existence of an at most
countable subset C of D with supC = x.

The following result characterizes the Archimedean Riesz spaces with
the countable sup property.

Theorem 2.27. An Archimedean Riesz space has the countable sup property
if and only if every σ-ideal is a band.

Proof. If a Riesz space has the countable sup property, then clearly every
σ-ideal is a band. For the converse assume that in an Archimedean Riesz
space E every σ-ideal is a band. Let 0 ≤ D ↑ x hold in E. We must show
that there exists an at most countable subset C of D with supC = x. The
proof will be based upon the following property:

• For each 0 < ε < 1 there exists an at most countable subset C of
D with

inf
{
(εx − c)+ : c ∈ C

}
= 0 . (�)

If this established, then for εn = 1 − 1
n (n = 2, 3, . . .) choose an at most

countable subset Cn of D with inf
{
(εnx − c)+ : c ∈ Cn

}
= 0, and consider

the at most countable subset C =
⋃∞

n=2 Cn of D. Now let 0 ≤ y ≤ x − c
hold for all c ∈ C. Then from Andô’s inequality

0 ≤ y ≤ x − c ≤ (1 − εn)x + (εnx − c)+ = 1
nx + (εnx − c)+ ,

we see that

0 ≤ y ≤ 1
nx + inf

{
(εnx − c)+ : c ∈ Cn

}
= 1

nx

for all n. Therefore, y = 0, and so inf{x − c : c ∈ C} = 0. In other words,
sup C = x, proving that E has the countable sup property.

To establish (�) fix 0 < ε < 1, and let

A =
{
y ∈ E : ∃ an at most countable C ⊆ D with

inf
{
|y| ∧ (εx − c)+ : c ∈ C

}
= 0
}

.
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We claim that A is a band. According to our hypothesis, to establish this
claim it suffices to show that A is a σ-ideal.

Clearly, A is a solid set and αy ∈ A for all y ∈ A and α ∈ R. On the
other hand, if y, z ∈ A, then pick two at most countable subsets U and V
of D with

inf
{
|y| ∧ (εx − u)+ : u ∈ U

}
= inf

{
|z| ∧ (εx − v)+ : v ∈ V

}
= 0 .

Since D is directed upward, for each u ∈ U and v ∈ V there exists some
wu,v ∈ D with u ∨ v ≤ wu,v. From the inequality

|y + z| ∧ (εx − wu,v)+ ≤ |y| ∧ (εx − u)+ + |z| ∧ (εx − v)+ ,

it follows that the at most countable set W = {wu,v : u ∈ U and v ∈ V
}

of
D satisfies inf

{
|y + z| ∧ (εx − w)+ : w ∈ W

}
= 0. Thus, y + z ∈ A, and so

A is an ideal of E.
To see that A is a σ-ideal, let {yn} ⊆ A satisfy 0 ≤ yn ↑ y in E. For

each n pick an at most countable subset Cn of D with

inf
{
yn ∧ (εx − c)+ : c ∈ Cn

}
= 0 ,

and consider the at most countable subset C =
⋃∞

n=1 Cn of D. Clearly, if
0 ≤ u ≤ y ∧ (εx − c)+ for all c ∈ C, then 0 ≤ yn ∧ u ≤ yn ∧ (εx − c)+ also
holds for all c ∈ Cn, and so yn∧u = 0 for all n. In view of yn∧u ↑ y∧u = u,
we see that u = 0. Therefore, inf

{
y ∧ (εx− c)+ : c ∈ C

}
= 0, and so y ∈ A.

That is, A is a σ-ideal, and hence A is a band.
Now note that (u − εx)+ ∈ A holds for all u ∈ D, and in view of{

(u − εx)+ : u ∈ D
}
↑ (1 − ε)x ,

we see that x ∈ A. Therefore, there exists an at most countable subset C of
D satisfying inf

{
x ∧ (εx − c)+ : c ∈ C

}
= inf

{
(εx − c)+ : c ∈ C

}
= 0, and

the proof is finished.

We are now in the position to characterize the Riesz spaces with the
order continuity property.

Theorem 2.28 (Tucker–Fremlin). For an Archimedean Riesz space E the
following statements are equivalent.

(1) E has the order continuity property.

(2) Every lattice homomorphism from E into any Archimedean Riesz
space is order continuous.

(3) Every uniformly closed ideal of E is a band.

(4) E has the σ-order continuity property and the countable sup prop-
erty.
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Proof. (1) =⇒ (2) Obvious.

(2) =⇒ (3) Let A be a uniformly closed ideal of E. By Theorem 2.23
the Riesz space E/A is Archimedean. Now the canonical projection of E
onto E/A is a lattice homomorphism, and hence by our hypothesis it must
be also order continuous. By Theorem 2.21 the ideal A is a band.

(3) =⇒ (4) By Theorem 2.26 the Riesz space E has the σ-order conti-
nuity property. Also, since every σ-ideal is uniformly closed, it follows that
every σ-ideal of E is a band. Thus, by Theorem 2.27, the Riesz space E
must have the countable sup property too.

(4) =⇒ (1) Obvious.

Now our discussion turns to extension properties of lattice homomor-
phisms. The first result of this type states that a lattice homomorphism
whose domain is a majorizing Riesz subspace has always a lattice homomor-
phic extension to the whole space. This interesting result was proven by
Z. Lipecki [115] and W. A. J. Luxemburg and A. R. Schep [129].

Theorem 2.29 (Lipecki–Luxemburg–Schep). Let E and F be two Riesz
spaces with F Dedekind complete. If G is a majorizing Riesz subspace of E
and T : G → F is a lattice homomorphism, then T extends to all of E as a
lattice homomorphism.

Proof. Let T : G → F be a lattice homomorphism. By Theorem 1.33 the
convex set E(T ) has extreme points; let S be such a point. Then, by Theo-
rem 1.31, we have inf

{
S|x − y| : y ∈ G

}
= 0 for each x ∈ E.

Now fix x ∈ E. Then for each y ∈ G, the fact that T : G → F is a lattice
homomorphism implies S|y| = T |y| = |Ty| = |Sy|, and so

S|x| ≤ S|x − y| + S|y| = S|x − y| + |Sy|
≤ S|x − y| + |Sy − Sx| + |Sx| ≤ 2S|x − y| + |Sx|

holds for all y ∈ G. From this, taking the infimum, it follows that

S|x| ≤ |Sx| ≤ S|x|
holds for all x ∈ E. So, S is a lattice homomorphic extension of T .

The above proof is due to Z. Lipecki [115]. Later the converse of this
theorem will be established. That is, it will be shown (Theorem 2.51) that
the extreme points of E(T ) are precisely the lattice homomorphic extensions
of T . As an illustration of this property we present the following example.

Example 2.30. Let E = C[0, 1], F = R, and let G = {λ1 : λ ∈ R
}
,

where 1 denotes the constant function one. Clearly, G is a Riesz subspace
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majorizing E. Define T : G → R by T (λ1) = λ, and note that T is a lattice
homomorphism.

Using the Riesz representation theorem it is easy to see that E(T ) can
be identified with the convex set of all probability measures on [0, 1]; see, for
instance [8, Section 38]. The extreme points of E(T ) are precisely the Dirac
measures

{
δt : t ∈ [0, 1]

}
, and these are precisely the lattice homomorphisms

that extend T to all of E. In other words, S ∈ E(T ) is a lattice homomorphic
extension of T if and only if there exists some t ∈ [0, 1] such that

S(f) = f(t) =
∫

f dδt

holds for all f ∈ C[0, 1].

The next result from the theory of Riesz spaces deals with order dense
Riesz subspaces, and is very useful in many contexts.

Theorem 2.31. Let G be an order dense Riesz subspace of an Archimedean
Riesz space E. If G is Dedekind complete in its own right, then G is an
ideal of E.

Proof. Assume that 0 ≤ x ≤ y ∈ G and x ∈ E. Since E is Archimedean
and G is order dense in E, there exists a net {xα} ⊆ G with 0 ≤ xα ↑ x in
E; see Theorem 1.34. Also, by the Dedekind completeness of G, we have
0 ≤ xα ↑ z in G for some z ∈ G. Now, by Theorem 1.35, also we have xα ↑ z
in E. Thus, x = z ∈ G holds, and this shows that G is an ideal of E.

Recall that a Riesz space is called laterally complete whenever every
subset of pairwise disjoint positive vectors has a supremum. For the next
important extension theorem that deals with lattice homomorphisms having
values in laterally complete we shall need the following simple property.

An order continuous lattice homomorphism preserves arbitrary suprema
and infima.

To see this, let T : E → F be an order continuous lattice homomorphism,
and let x = sup D in E. If C denotes the collection of all finite suprema of D,
then (since T is a lattice homomorphism) the collection of all finite suprema
of T (D) is precisely T (C). In view of C ↑ x, the order continuity of T implies
T (C) ↑ T (x), and from this it follows that T (x) = supT (D) holds. It should
be noted that the converse is also true. That is, a lattice homomorphism is
order continuous if and only if it preserves arbitrary suprema and infima.

Theorem 2.32. Let T : G → F be an order continuous lattice homomor-
phism from a Dedekind complete Riesz space G to an Archimedean laterally
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complete Riesz space F . If G is an order dense Riesz subspace of an Archi-
medean Riesz space E, then the formula

T (x) = sup
{
T (y) : y ∈ G and 0 ≤ y ≤ x

}
, x ∈ E+ ,

defines an extension of T from E to F , which is an order continuous lattice
homomorphism.

In addition, if T is an order continuous lattice isomorphism (into), then
so is its extension.

Proof. The difficult part of the proof is to establish that for each x ∈ E+

the supremum
sup
{
T (y) : y ∈ G and 0 ≤ y ≤ x

}
exists in F . If this is done, then the rest of the proof can be completed by
repeating the proof of Theorem 1.65. Since G does not majorize E and F
need not be Dedekind complete, the existence of the above supremum is by
no means obvious.

To prove the existence of the supremum, fix 0 ≤ x ∈ E and consider the
nonempty set D = {y ∈ G : 0 ≤ y ≤ x}. The existence of sup T (D) will be
proven by steps, which are also of some independent interest in their own
right. Keep in mind that (according to Theorem 2.31) G is an ideal of E.

Step 1. For each 0 < e ∈ G there exists some w ∈ G with 0 < w ≤ e and a
positive integer n satisfying Pw(y) ≤ nw for all y ∈ D, where Pw

is the order projection of G onto the band generated by w in G.

Fix 0 < e ∈ G. Since E is Archimedean, there exists some integer n
with (ne−x)+ > 0. Pick some v ∈ G with 0 < v ≤ (ne−x)+, and note that
v ⊥ (y − ne)+ holds for all y ∈ D. From 0 < v ≤ ne we see that v ∧ e > 0,
and so the vector w = Pv(e) ∈ G satisfies 0 < w ≤ e.

Now for each y ∈ D the relation[
Pv(y) − nw

]+ = Pv(y − ne)+ ∈ Bv ∩ Bd
v = {0}

implies that
[
Pv(y)− nw

]+ = 0, and hence Pv(y) ≤ nw holds for all y ∈ D.
Finally, from Pw(y) = sup

{
y ∧ kw : k = 1, 2, . . .

}
∈ Bv, it follows that

Pw(y) = Pv

(
Pw(y)

)
= Pw

(
Pv(y)

)
≤ nPw(w) = nw

holds for all y ∈ D.

Step 2. There exists a maximal disjoint collection {ei : i ∈ I} of nonzero
positive vectors of G such that Pei(y) ≤ ei holds for all i ∈ I and
all y ∈ D.

Zorn’s lemma, in conjunction with Step 1 and the order denseness of G
in E guarantees the existence of a maximal disjoint collection of nonzero
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positive vectors {wi : i ∈ I}, such that for each i there exists a positive
integer ni (depending upon i) satisfying Pwi(y) ≤ niwi for all y ∈ D. If
ei = niwi, then {ei : i ∈ I} satisfies the desired properties.

Step 3. There exists a pairwise disjoint set {yi : i ∈ I} ⊆ D satisfying
x = sup{yi} in E.

Let {ei : i ∈ I} be as in Step 2. Since G is Dedekind complete and
Pei(y) ≤ ei holds for all y ∈ D, it follows that yi = sup

{
Pei(y) : y ∈ D

}
exists in G and satisfies yi ≤ ei for each i ∈ I. Now let y ∈ D. If for some
0 ≤ w ∈ G we have Pei(y) ≤ y − w for all i, then 0 ≤ w ≤ y − Pei(y) ∈ Bd

ei

holds for each i, and so w ∧ ei = 0 for all i. Since {ei : i ∈ I} is a maximal
disjoint set of nonzero positive vectors, it follows that w = 0, and therefore
y = sup

{
Pei(y) : i ∈ I

}
holds in G (and hence in E) for each y ∈ D.

Now note that for each y ∈ D we have Pei(y) ≤ y ≤ x, and so yi ≤ x
holds for each i. On the other hand, if yi ≤ w holds in E for each i, then
Pei(y) ≤ w also holds for all y ∈ D and all i, and so by the above discussion

y = sup
{
Pei(y) : i ∈ I

}
≤ w

in E for all y ∈ D. So, x ≤ w, and therefore x = sup{yi} holds in E.

Step 4. If {yi : i ∈ I} is a pairwise disjoint subset of D with x = sup{yi},
then supT (D) = sup

{
T (yi)

}
holds in F .

Since T : G → F is a lattice homomorphism,
{
T (yi) : i ∈ I

}
is a pairwise

disjoint subset of F+. By the lateral completeness of the Riesz space F , the
vector s = sup

{
T (yi) : i ∈ I

}
exists in F , and we claim that we have

s = sup T (D). To see this, let y ∈ D. Since T is an order continuous lattice
homomorphism, it follows from

y = y ∧ x = y ∧ sup{yi : i ∈ I} = sup{y ∧ yi : i ∈ I}
that

T (y) = sup
{
T (y ∧ yi) : i ∈ I

}
= sup

{
T (y) ∧ T (yi) : i ∈ I

}
= T (y) ∧ sup

{
T (yi) : i ∈ I

}
= T (y) ∧ s ≤ s .

Thus, s = sup T (D) holds, and the proof is finished.

We shall close this section with two theorems dealing with lattice homo-
morphisms on C(X)-spaces.

Theorem 2.33. Let X be a Hausdorff compact topological space. Then
for a nonzero linear functional φ : C(X) → R the following statements are
equivalent.

(1) φ is a lattice homomorphism.
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(2) There exists a unique constant c > 0 and a unique point x ∈ X
such that φ = cδx, i.e., φ(f) = cf(x) holds for all f ∈ C(X).

Proof. (1) =⇒ (2) Assume that φ is a lattice homomorphism. Let µ be the
unique Borel measure on X satisfying φ(f) =

∫
Xf dµ for all f ∈ C(X);

see [8, Section 38].
If x and t are two distinct points in the support of µ, then pick two

disjoint open sets V and W with x ∈ V and t ∈ W . Next choose some
f ∈ C(X) with f(x) = 1 and f = 0 on V c, and some g ∈ C(X) with
g(t) = 1 and g = 0 on W c. Clearly, f ∧ g = 0 holds. On the other hand,
it is easy to check that φ(f) ∧ φ(g) > 0 also holds, which is impossible.
Therefore, the support of µ consists precisely of one point, say x. Now note
that if c = µ

(
{x}
)

> 0, then

φ(f) =
∫

X
f dµ = f(x)µ

(
{x}
)

= cf(x)

holds for all f ∈ C(X).

(2) =⇒ (1) Obvious.

The positive operators between spaces of continuous functions that are
lattice homomorphisms are characterized as follows.

Theorem 2.34. Let X and Y be two Hausdorff compact topological spaces.
Then for a nonzero positive operator T : C(X) → C(Y ) the following state-
ments are equivalent.

(1) T is a lattice homomorphism.

(2) There exists a unique positive function g ∈ C(Y ) and a function
ξ : Y → X (which is continuous on

{
y ∈ Y : g(y) > 0

}
) satisfying

[Tf ](y) = g(y)f
(
ξ(y)
)

for all y ∈ Y and all f ∈ C(X).

Proof. (1) =⇒ (2) Assume that T is a lattice homomorphism. From

[Tf ](y) = δy(Tf) = (δy ◦ T )f ,

we see that the linear functional δy ◦ T : C(X) → R is a lattice homomor-
phism for each y ∈ Y . Thus, by Theorem 2.33, for each y ∈ Y there exists
a unique constant g(y) ≥ 0 and some (not necessarily unique) ξ(y) ∈ X
satisfying

[Tf ](y) = (δy ◦ T )f = g(y)f
(
ξ(y)
)
.

Clearly, g = T1 ∈ C(Y ).
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Now let a net {yα} ⊆ Y satisfy yα → y in Y , g(y) > 0, and g(yα) > 0
for all α. Then g(yα) → g(y). On the other hand, from

g(yα)f
(
ξ(yα)

)
= [Tf ](yα) −→ [Tf ](y) = g(y)f

(
ξ(y)
)
,

it follows that f
(
ξ(yα)

)
→ f
(
ξ(y)
)

holds for all f ∈ C(X). This implies
that ξ(yα) → ξ(y), and so ξ is continuous on

{
y ∈ Y : g(y) > 0

}
.

(2) =⇒ (1) Obvious.

Exercises

1. (Jameson [78]) If T : E → F is an onto operator between two Riesz spaces,
then show that the following statements are equivalent:
(a) T is a lattice homomorphism.
(b) The kernel of T (i.e.,

{
x ∈ E : Tx = 0

}
) is an ideal and T (E+)=F+.

2. A sequence {xn} in a Riesz space is said to be uniformly Cauchy
whenever there exists some u > 0 such that for each ε > 0 we have
|xn − xm| ≤ εu for all n and m sufficiently large. A Riesz space is
called uniformly complete whenever every uniformly Cauchy sequence
is relatively uniformly convergent. Prove the following statements due to
W. A. J. Luxemburg and L. C. Moore, Jr. [127].
(a) If T : E → F is a σ-order continuous lattice homomorphism from a

Dedekind σ-complete Riesz space E onto a Riesz space F , then F is
Dedekind σ-complete.

(b) If T : E → F is a lattice homomorphism from a uniformly complete
Riesz space E onto a Riesz space F , then F is uniformly complete.

3. For a positive operator R : E → F between two Riesz spaces establish the
following:
(a) If for each Dedekind complete Riesz space G the operator T �→ TR,

from Lb(F,G) to Lb(E,G), is a lattice homomorphism, then the
operator R′ : F∼ → E∼ is a lattice homomorphism.

(b) Assume that E is Dedekind complete, E∼
n separates the points of

E, and R is order continuous. Then for each Dedekind complete
Riesz space G the operator T �→ TR, from Lb(F,G) to Lb(E,G), is
a lattice homomorphism if and only if R is interval preserving.

4. This exercise deals with the lattice properties of the mapping T �→ T 2

from Lb(E) to Lb(E). Assume that E is Dedekind complete.
(a) Give an example of two operators S, T ∈ Lb(E) with S ∧ T = 0 and

S2 ∧ T 2 �= 0.
(b) Give an example of two operators S, T ∈ Lb(E) with S2 ∧ T 2 = 0

and S ∧ T �= 0.
(c) Show that if S2 ∧ T 2 = 0, then (S ∧ T )2 = 0.
(d) Assume that S, T ∈ Lb(E) satisfy S ∧ T = 0. Show that if either

T (E) ⊥ S(E) or S+T is interval preserving, then we have Sn∧Tn =0
for n = 1, 2, . . . .
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(e) Present an example of two interval preserving operators such that
Sn ∧ Tn = 0 for all n and with S + T not interval preserving.

5. A vector e > 0 in a Riesz space E is called:
(a) A discrete vector, whenever the ideal generated by e coincides

with the vector subspace generated by e, i.e., Ee = {λe : λ ∈ R}.
(b) An atom, if x ∧ y = 0 and x, y ∈ [0, e] imply either x = 0 or y = 0.

Establish the following.
(i) In an Archimedean Riesz space a positive vector is an atom if and

only if it is a discrete vector.
(ii) If E is a Riesz space and 0 < φ ∈ E∼, then φ is a lattice homomor-

phism (from E to R) if and only if φ is a discrete vector of E∼.
6. (Phelps [163]; Ellis [60]) Consider two compact Hausdorff topological

spaces X and Y , and let C be the convex set of all positive operators
T : C(X) → C(Y ) satisfying T (1X) = 1Y . Show that for a positive
operator T ∈ C the following statements are equivalent.
(a) T is an extreme point of C.
(b) T is an algebra homomorphism, i.e., T (fg) = T (f)T (g) holds for all

f, g ∈ C(X).
(c) T is a lattice homomorphism.
(d) There exists a unique continuous function ξ : Y → X such that

Tf = f ◦ ξ holds for all f ∈ C(X).
7. Consider an (m × n)-matrix A = [aij ] with nonnegative elements. Show

that A (as an operator from R
n to R

m) is a lattice homomorphism if and
only if there exists a diagonal matrix C with nonnegative elements and a
(0, 1)-stochastic matrix2 B satisfying A = BC.

8. (Kutty–Quinn [109]) Show that for an Archimedean Riesz space E the
following two statements are equivalent.
(a) E has the projection property.
(b) If x ∈ E+ and y ∈ Eδ satisfy x ∧ (x − y) = 0, then y ∈ E.

9. For a Riesz space E show that:
(a) E is Dedekind σ-complete if and only if E has the principal projec-

tion property and is uniformly complete. (See Exercise 2 above for
the definition of a uniformly complete Riesz space.)

(b) E is Dedekind complete if and only if E has the projection property
and is uniformly complete. [Hint : Use Theorem 2.8. ]

2.3. Orthomorphisms

In this section a special class of operators called orthomorphisms will be
studied. The remarkable properties of these operators have been investi-
gated in various ways by many authors. H. Nakano [148] was the first
to introduce these operators, under the name dilatators, by means of their
commutativity with order projections. The positive orthomorphisms in the

2 A (0, 1)-stochastic matrix is a (0, 1)-matrix having exactly one 1 in each row.
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works of G. Birkhoff are referred to as essentially positive operators [37,
p. 396]. P. F. Conrad and J. E. Diem [50] called them polar preserving en-
domorphisms, while A. Bigard and K. Keimel [34] introduced their present
name orthomorphisms. Other names used for orthomorphisms in the lit-
erature are stabilisateurs (M. Meyer [137, 138, 139]) and multiplication
operators (R. C. Buck [44] and A. W. Wickstead [191]).

Definition 2.35. An operator T : E → E on a Riesz space is said to be
band preserving whenever T leaves all bands of E invariant, i.e., whenever
T (B) ⊆ B holds for each band B of E.

The next theorem characterizes the band preserving operators. Keep in
mind that all Riesz spaces are assumed to be Archimedean.

Theorem 2.36. For an operator T : E → E on an Archimedean Riesz space
the following statements are equivalent.

(1) T is band preserving.
(2) x ⊥ y implies Tx ⊥ y.
(3) For each x ∈ E we have Tx ∈ Bx.

Proof. (1) =⇒ (2) Let x ⊥ y. Then y ⊥ Bx holds. From our hypothesis
we have T (Bx) ⊆ Bx, and so y ⊥ T (Bx). In particular, we have Tx ⊥ y.

(2) =⇒ (3) Let x ∈ E. Then for each y ∈ Bd
x we have x ⊥ y, and so

Tx ⊥ y holds for all y ∈ Bd
x . Therefore, Tx ∈ Bdd

x = Bx.

(3) =⇒ (1) Let B be a band of E. If x ∈ B, then Bx ⊆ B holds, and so
Tx ∈ Bx ⊆ B. That is, T (B) ⊆ B so that T is band preserving.

In case E has the principal projection property, the band preserving
operators are precisely the ones that commute with the order projections.
This property was used by H. Nakano [148, 151] to define the concept of a
dilatator.

Theorem 2.37. If E has the principal projection property, then an operator
T : E → E is band preserving if and only if T commutes with every order
projection of E.

Proof. Assume first that T commutes with every order projection. Then
for each x ∈ E we have

T (x) = TPx(x) = PxT (x) ∈ Bx ,

and so by Theorem 2.36 the operator T is band preserving.
For the converse suppose that T is band preserving, and let PB be an

order projection. If x ∈ E, then write x = y + z ∈ B ⊕ Bd, and note that
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T (y) ∈ B and T (z) ∈ Bd. Thus,

PBT (x) = PBTy + PBTz = Ty = TPB(x)

holds for all x ∈ E, and so PBT = TPB, as desired.

A band preserving operator need not be order bounded as the next
example of M. Meyer [139] shows.

Example 2.38 (Meyer). Let E denote the vector space of all real-valued
functions f defined on the interval [0, 1) for which there exists a partition
0 = x0 < x1 < · · · < xn = 1 (depending upon f) such that f is linear (i.e.,
of the form f(x) = mx + b) on each interval [xi−1, xi) for each 1 ≤ i ≤ n. It
is easy to check that (under the pointwise algebraic and lattice operations)
E is an Archimedean Riesz space.

Let f ∈ E. Pick a partition 0 = x0 < x1 < · · · < xn = 1 for which
f is linear on each [xi−1, xi); let f(x) = mix + bi for each x ∈ [xi−1, xi),
1 ≤ i ≤ n. Next define [Tf ](x) = mi for each x ∈ [xi−1, xi), 1 ≤ i ≤ n. It
should be clear that f �→ Tf defines an operator from E to E.

It is a routine matter to verify that T is not order bounded. However,
it is not difficult to see that f ⊥ g implies Tf ⊥ g, which shows that T is a
band preserving operator.

Recall that an operator T : E → F between two Riesz spaces is said to
preserve disjointness whenever x ⊥ y in E implies Tx ⊥ Ty in F . Clearly,
every band preserving operator preserves disjointness. The following basic
result of M. Meyer [137] describes an important property of disjointness
preserving operators; its proof below is due to S. J. Bernau [31].

Lemma 2.39 (Meyer). Let E and F be two Riesz spaces with F Archi-
medean. If an order bounded operator T : E → F preserves disjointness,
then

(Tx)+ ∧ (Ty)− = 0
holds for all x, y ∈ E+.

Proof. Fix x, y ∈ E+, and let 0 < ε < 1. Since T is order bounded, there
exists some w ∈ F with |Tz| ≤ w for each 0 ≤ z ≤ x. Let

Λ =
{
λ ≥ 0:

[
(Tx)+ ∧ (Ty)− − εw

]+ ⊥ T
(
(λx − y)+

)}
.

In view of 0 ≤ y ≤ (y − εx)+ + εx, it follows from Theorem 1.13 that
there exist 0 ≤ y1 ≤ (y − εx)+ and 0 ≤ y2 ≤ εx with y = y1 + y2. Clearly,
|Ty2| ≤ εw, and so[

(Tx)+ ∧ (Ty)− − εw
]+ ≤

(
|Ty| − εw

)+
≤
(
|Ty1| + |Ty2| − εw

)+ ≤ |Ty1| .
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Since y1 ⊥ (δx − y)+ holds in E for each 0 ≤ δ ≤ ε, our hypothesis implies
Ty1 ⊥ T (δx− y)+ in F for all 0 ≤ δ ≤ ε, and so from the last inequality we
get [0, ε] ⊆ Λ.

Now suppose λ ∈ Λ satisfies λ ≥ ε. Put α = max
{
1, 1

λ

}
, and note that

α ≥ 1, αλ ≥ 1, and αε ≤ 1. Recalling that in any Riesz space we have
2(u ∧ v) ≤ u + v, we get u+ ∧ v+ = (u ∧ v) ∨ 0 ≤ 2(u ∧ v)+ ≤ (u + v)+.
Therefore, using the last inequality, we see that

(Tx)+ ∧ (Ty)− ≤ (αλTx)+ ∧ (αTy)− = α
[
(Tλx)+ ∧ (Ty)−

]
= α
[
(Tλx)+ ∧ (−Ty)+

]
≤ α
[
T (λx − y)

]+ (�)

≤ α
[∣∣T (λx − y)+

∣∣+ ∣∣T (y − λx)+
∣∣] .

Next, fix any δ with 0 ≤ δ ≤ ε2, and then write (y−λx)+ = y1+y2, where
0 ≤ y1 ≤ [y − (λ + δ)x]+ and 0 ≤ y2 ≤ δx. Clearly, α|Ty2| ≤ αε2w ≤ εw
holds, and so from (�) we get[

(Tx)+ ∧ (Ty)−− εw
]+ ≤

[
α
∣∣T (λx− y)+

∣∣+ α|Ty1| + α|Ty2| − εw
]+

≤ α
∣∣T (λx − y)+

∣∣+ α|Ty1| . (��)

Since λ ∈ Λ, we have
[
(Tx)+ ∧ (Ty)− − εw

]+ ⊥ T (λx − y)+, and hence it
follows from (��) that

[
(Tx)+∧ (Ty)−− εw

]+ ≤ α|Ty1|. On the other hand,
y1 ⊥ [(λ + δ)x − y]+ implies Ty1 ⊥ T

(
(λ + δ)x − y

)+, and consequently[
(Tx)+ ∧ (Ty)− − εw

]+ ⊥ T
(
(λ + δ)x + y

)+. Therefore, λ + δ ∈ Λ holds for
each δ with 0 ≤ δ ≤ ε2, and hence [λ, λ+ε2] ⊆ Λ. This implies [0, ε+nε2] ⊆ Λ
holds for all n = 1, 2, . . ., and consequently Λ = [0,∞).

Finally, fix some v ∈ F with |Tz| ≤ v for all 0 ≤ z ≤ y. Since for each
δ > 0 we have x = (x − δy)+ + x ∧ δy, we get[

(Tx)+ ∧ (Ty)− − εw
]+ ≤ (Tx)+ ≤

∣∣T (x − δy)+
∣∣+ δv ,

and in view of
[
(Tx)+ ∧ (Ty)− − εw

]+ ⊥ δT
(

1
δ x − y

)+ = T (x − δy)+,
we see that

[
(Tx)+ ∧ (Ty)− − εw

]+ ≤ δv holds for all δ > 0. Since F is
Archimedean, the latter implies

[
(Tx)+∧(Ty)−−εw

]+ = 0. Since 0 < ε < 1
is arbitrary, the Archimedeaness of F once more yields (Tx)+ ∧ (Ty)− = 0,
and the proof is finished.

Every order bounded operator that preserves disjointness has a modulus.

Theorem 2.40. If an order bounded operator T : E → F between two Riesz
spaces with F Archimedean preserves disjointness, then its modulus exists
and

|T |
(
|x|
)

=
∣∣T (|x|)∣∣ = ∣∣T (x)

∣∣
holds for all x ∈ E.
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Proof. Let T : E → F be an order bounded and disjointness preserving
operator between two Riesz spaces with F Archimedean. We claim that
0 ≤ y ≤ x implies |Ty| ≤ |Tx|. Indeed, if 0≤y≤x, then

T (x) = T (x − y) + T (y)

=
[(

T (x− y)
)+ + (Ty)+

]
−
[(

T (x− y)
)− + (Ty)−

]
,

and each positive term is (by Lemma 2.39) disjoint from each negative term.
Consequently, from Theorem 1.5 we have

|Tx| =
[
T (x − y)

]+ + (Ty)+ +
[
T (x − y)

]− + (Ty)−

=
∣∣T (x − y)

∣∣+ |Ty| ≥ |Ty| .

Now let |y| ≤ x in E. Using the fact that Ty+ ⊥ Ty−, the above
discussion yield

|Ty| = |Ty+ − Ty−| = |Ty+ + Ty−| =
∣∣T (|y|)∣∣ ≤ |Tx| ,

and so |Tx| = sup
{
|Ty| : |y| ≤ x

}
holds for each x ∈ E+. By Theorem 1.14

the modulus of T exists, and

|T |(x) =
∣∣T (x)

∣∣
holds for all x ∈ E+.

Finally, if x ∈ E, then T (x+) ⊥ T (x−), and so∣∣T (|x|)∣∣ = |T |(|x|) = |T |(x+) + |T |(x−) = |T (x+)| + |T (x−)|
=
∣∣T (x+) − T (x−)

∣∣ = ∣∣T (x)
∣∣ ,

and the proof is finished.

An order bounded band preserving operator is known as an orthomor-
phism.

Definition 2.41. An orthomorphism is a band preserving operator that
is also order bounded.

Thus, by Theorem 2.36 an order bounded operator T : E → F is an
orthomorphism if and only if x ⊥ y implies Tx ⊥ y. An orthomorphism
which is at the same time a positive operator is referred to as a positive
orthomorphism. Note that every positive orthomorphism is necessarily a
lattice homomorphism. Also, it should be noted that every orthomorphism
preserves disjointness. For positive orthomorphisms, Definition 2.41 is due
to A. Bigard and K. Keimel [34], while M. Meyer [137] was the first to
define an orthomorphism as above.

Now let T : E → F be an operator between two Riesz spaces. Then the
set {

x ∈ E : T [0, |x|] is order bounded
}
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is clearly nonempty and solid. Also, an easy application of Theorem 1.13
shows that this set is a vector subspace of E, and hence it is an ideal.
Obviously, this is the largest ideal (with respect to inclusion) on which the
operator T is order bounded, and it will be referred to as the ideal of order
boundedness of T .

The next result, due to Y. A. Abramovich [3] and B. de Pagter [160],
characterizes the band preserving operators that are orthomorphisms.

Theorem 2.42 (Abramovich–de Pagter). The ideal of order boundedness
of a band preserving operator on an Archimedean Riesz space is always a
band.

In particular, a band preserving operator is an orthomorphism if and
only if the operator is order bounded on an order dense ideal.

Proof. Let T : E → E be a band preserving operator on an Archimedean
Riesz space, let A be its ideal of order boundedness, and let B be the band
generated by A. We have to show that T is order bounded on B, and for this
it is enough to establish that 0 ≤ y ≤ x ∈ B implies |Ty| ≤ |Tx|. To this
end, note that T (B) ⊆ B holds and the operator T : A → B is disjointness
preserving. Therefore, if 0 ≤ u ≤ v ∈ A, then (by Theorem 2.40) we have
|Tu| ≤ |Tv|.

Now let 0 ≤ y ≤ x ∈ B, and suppose by way of contradiction that
(|Ty| − |Tx|)+ > 0. From T (B) ⊆ B we see that (|Ty| − |Tx|)+ ∈ B, and
so there exists some z ∈ A with 0 < z ≤ (|Ty| − |Tx|)+. Put un = nz ∧ y,
vn = nz ∧ x, and note that 0 ≤ un ≤ vn ∈ A implies |Tun| ≤ |Tvn| for all n.
Now from

y − un = (y − nz)+ ⊥ (nz − y)+ ≥ (nz − x)+

and

x − vn = (x − nz)+ ⊥ (nz − x)+ ,

we see that T (y − un) ⊥ (nz − x)+ and T (x − vn) ⊥ (nz − x)+. Therefore,
the relation

(
|Ty| − |Tx|

)+ =
∣∣(|Ty| − |Tx|

)+ −
(
|Tun| − |Tvn|

)+∣∣
≤
∣∣|Ty| − |Tx| −

(
|Tun| − |Tvn|

)∣∣
≤
∣∣T (y − un)

∣∣+ ∣∣T (x − vn)
∣∣ ⊥ (nz − x)+ ,

implies (nz−x)+ ⊥
(
|Ty|−|Tx|

)+. The latter, combined with the inequality
(nz − x)+ ≤ n

(
|Ty| − |Tx|

)+, shows that (nz − x)+ = 0 for all n. That is,
0 < nz ≤ x holds for all n ∈ N, contradicting the Archimedean property of
E, and the proof is finished.
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The disjointness preserving operators do not form a vector space. For
instance, consider the two operators S, T : C[0, 1] → C[0, 1] defined by

S(f) = f(0)·1 and T (f) = f(1)·1 .

Then S and T are both disjointness preserving (in fact, both are lattice
homomorphisms), and an easy argument shows that S+T does not preserve
disjointness.

In contrast with the disjointness preserving operators, it is easy to check
that the collection of all orthomorphisms on a Riesz space E forms a vector
space. This vector space will be denoted by Orth(E), i.e.,

Orth(E) :=
{
T ∈ Lb(E) : x ⊥ y implies Tx ⊥ y

}
.

Clearly, Orth(E) is a vector subspace of Lb(E), and Orth(E) with the or-
dering inherited from Lb(E) is an ordered vector space in its own right.

The ordered vector space Orth(E) has the following remarkable prop-
erty: It is a Riesz space under the pointwise algebraic and lattice operations.
This important result is due to A. Bigard and K. Keimel [34], and P. F. Con-
rad and J. E. Diem [50].

Theorem 2.43 (Bigard–Keimel–Conrad–Diem). If E is an Archimedean
Riesz space, then Orth(E) is an Archimedean Riesz space under the point-
wise algebraic and lattice operations. That is, if S, T ∈ Orth(E), then

[S ∨ T ](x) = S(x) ∨ T (x) and [S ∧ T ](x) = S(x) ∧ T (x)

holds for all x ∈ E+.

Proof. Let T : E → E be an orthomorphism. Then by Theorem 2.40 the
modulus of T exists and satisfies |T |(x) = |Tx| for each x ∈ E+. Clearly,
|T | is an orthomorphism, and this shows that Orth(E) is a Riesz space. The
two formulas follow from the lattice identities

S ∨ T = 1
2

(
S + T + |S − T |

)
and S ∧ T = 1

2

(
S + T − |S − T |

)
,

and the proof is finished.

Every orthomorphism is an order continuous operator. This result was
established via representation theorems by A. Bigard and K. Keimel [34],
and independently by P. F. Conrad and J. E. Diem [50]. A direct proof was
presented by W. A. J. Luxemburg and A. R. Schep [128].

Theorem 2.44. Every orthomorphism on an Archimedean Riesz space is
order continuous.

Proof. Let T : E → E be a positive orthomorphism on an Archimedean
Riesz space, and let xα ↓ 0 in E. We can assume that 0 ≤ xα ≤ x holds for
all α and some x ∈ E.



118 2. Components, Homomorphisms, and Orthomorphisms

Now suppose that some y ∈ E+ satisfies 0 ≤ y ≤ T (xα) ≤ T (x) for all
α. Since (xα − εx)+ ∧ (xα − εx)− = 0 holds for each ε > 0, we see that

0 ≤ (y − εTx)+ ∧ (xα − εx)− ≤ T (xα − εx)+ ∧ (xα − εx)− = 0 .

Therefore,

0 = (y − εTx)+ ∧ (xα − εx)− ↑α (y − εTx)+ ∧ εx

holds, from which it follows that (y − εTx)+ ∧ x = 0 for all ε > 0. Since
E is Archimedean, the latter conclusion implies y ∧ x = 0. Consequently,
y = y ∧ T (x) = 0, and so T (xα) ↓ 0 holds in E, proving that the operator T
is order continuous.

Finally, note that (since Orth(E) is a Riesz space) each orthomorphism
on E is the difference of two positive orthomorphisms, and hence every
orthomorphism is order continuous.

Clearly, the identity operator I : E → E is an orthomorphism. In fact, I
is a weak order unit of Orth(E). Indeed, if S ∈ Orth(E) satisfies S ∧ I = 0,
then S(x) ∧ x = (S ∧ I)(x) = 0 and so S(x) ∈ Bx ∩ Bd

x = {0} holds for all
x ∈ E+, i.e., S = 0.

In case E is Dedekind complete, Orth(E) has a nice characterization.

Theorem 2.45. If E is a Dedekind complete Riesz space, then Orth(E)
coincides with the band generated by the identity operator in Lb(E).

Proof. Let BI be the band generated by the identity operator I. By The-
orem 1.47 we see that BI ⊆ Orth(E).

For the reverse inclusion, let 0 ≤ T ∈ Orth(E). Since I is a weak order
unit in the Archimedean Riesz space Orth(E), it follows that T ∧ nI ↑ T .
From {T ∧ nI} ⊆ BI , we get T ∈ BI . Hence, Orth(E) ⊆ BI also holds,
proving that Orth(E) = BI , as required.

An orthomorphism always extends to an orthomorphism on the Dede-
kind completion of the space.

Theorem 2.46. If T : E → E is an orthomorphism on an Archimedean
Riesz space, then T extends uniquely to an orthomorphism on Eδ (the De-
dekind completion of E).

Proof. It is enough to show that every positive orthomorphism on E ex-
tends to a positive orthomorphism on Eδ. So, let T : E → E be a positive
orthomorphism. By Theorem 2.44 the operator T is order continuous, and
by Theorem 1.65 the formula

T ∗(x) = sup
{
T (y) : y ∈ E and 0 ≤ y ≤ x

}
, 0 ≤ x ∈ Eδ ,
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defines an order continuous positive operator on Eδ. Since E is order dense
in Eδ it should be clear that T ∗ is the only linear order continuous extension
of T to Eδ.

Now to see that T ∗ is also an orthomorphism, let x∧ y = 0 in Eδ. Note
that if u, v ∈ E satisfy 0 ≤ u ≤ x and 0 ≤ v ≤ y, then u ∧ v = 0 holds in E,
and so u ∧ Tv = 0. Thus,

x ∧ T ∗y =
[
sup{u ∈ E : 0 ≤ u ≤ x}

]
∧
[
sup{Tv : v ∈ E and 0 ≤ v ≤ y}

]
= sup{u ∧ Tv : u, v ∈ E, 0 ≤ u ≤ x, and 0 ≤ v ≤ y} = 0 ,

so that T ∗ is an orthomorphism.

For each T ∈ Orth(E) denote by T ∗ the (unique) orthomorphism in
Orth(Eδ) that by Theorem 2.46 extends T linearly to all of Eδ. This means
that a mapping T �→ T ∗ is defined from Orth(E) to Orth(Eδ), which is
clearly linear and one-to-one. In addition, it is readily seen that the operator
T �→ T ∗ is a lattice isomorphism (into). The image of T �→ T ∗ is the Riesz
subspace of Orth(Eδ) consisting of all orthomorphisms of Orth(Eδ) that
leave E invariant. Thus, if we identify Orth(E) with its image in Orth(Eδ)
under the lattice isomorphism T �→ T ∗, then

Orth(E) =
{
T ∈ Orth(Eδ) : T (E) ⊆ E

}
.

Summarizing the above, we have the following basic theorem.

Theorem 2.47. If E is an Archimedean Riesz space, then

Orth(E) =
{
T ∈ Orth(Eδ) : T (E) ⊆ E

}
.

If two orthomorphisms agree on some vector, then they also agree on
the band generated by that vector. The details follow.

Theorem 2.48. The kernel of an orthomorphism is a band. In particular,
if two orthomorphisms agree on a set, then they also agree on the band
generated by that set.

Proof. Let T : E → E be an orthomorphism. Then by Theorem 2.40 we
have Ker (T ) = NT . Since T is order continuous, the ideal NT is a band,
and so Ker (T ) is a band.

If two orthomorphisms S and T agree on some set A, then the ortho-
morphism R = S − T is zero on A, and hence A ⊆ Ker (R). Since Ker (R)
is a band, the band generated by A is included in Ker (R), and so S and T
agree on that band.

We continue with a few extension properties of orthomorphisms.
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Theorem 2.49. Let G be a Riesz subspace of a Dedekind complete Riesz
space E, and let an operator T : G → E satisfy 0 ≤ T (x) ≤ x for all x ∈ G+.
Then T extends to a positive orthomorphism on E.

In particular, if E is Dedekind complete and x ∈ E+, then for each
|y| ≤ x there exists an orthomorphism T : E → E (uniquely determined on
Bx) with T (x) = y.

Proof. Note that the formula p(x) = x+ defines a sublinear mapping on
E such that T (x) ≤ p(x) holds for all x ∈ G. By the Hahn–Banach Theo-
rem 1.25, the operator T has an extension to all of E (which we shall denote
by T again) such that T (x) ≤ p(x) holds for all x ∈ E. Now it easily follows
that 0 ≤ T ≤ I holds in Lb(E).

For the last part let |y| ≤ x. First, assume that 0 ≤ y ≤ x holds.
Then G = {λx : λ ∈ R} is a Riesz subspace of E and T : G → E, defined by
T (λx) = λx, satisfies 0 ≤ T (z) ≤ z for all z ∈ G+ and T (x) = y. By the first
part, T extends to an orthomorphism to all of E. Now for the general case
|y| ≤ x. Pick two orthomorphisms S and T with S(x) = y+ and T (x) = y−,
and note that the orthomorphism S − T satisfies (S − T )(x) = y.

We have mentioned before that every positive orthomorphism is a lat-
tice homomorphism. However, a lattice homomorphism need not be an
orthomorphism. For instance, the shift operator T : �2 → �2, defined by
T (x1, x2, . . .) = (0, x1, x2, . . .), is a lattice homomorphism but it is not an
orthomorphism. The next result of S. S. Kutateladze [108] presents an in-
teresting characterization of lattice homomorphisms in terms of orthomor-
phisms.

Theorem 2.50 (Kutateladze). For a positive operator T : E → F between
two Riesz spaces with F Dedekind complete the following statements are
equivalent.

(1) T is a lattice homomorphism.

(2) For every operator S : E → F with 0 ≤ S ≤ T , there exists a
positive orthomorphism R ∈ Orth(F ) satisfying S = RT .

Proof. (1) =⇒ (2) Assume that T is a lattice homomorphism and that
S ∈ L(E, F ) satisfies 0 ≤ S ≤ T . Start by observing that if Tx = Ty holds,
then the relation 0 ≤ |Sx − Tx| ≤ S|x − y| ≤ T |x − y| = |Tx − Ty| = 0
implies Sx = Sy. Thus, the formula

R(Tx) = Sx , x ∈ E ,

defines a positive operator on the range T (E) of T . Since T (E) is a Riesz
subspace of F and 0 ≤ R(Tx) = Sx ≤ Tx holds for each x ∈ E+, it
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follows from Theorem 2.49 that R extends to a positive orthomorphism on
F . Clearly, S = RT holds.

(2) =⇒ (1) Assume that x ∧ y = 0 holds in E. Let S be the operator
given by Theorem 1.28 that agrees with T on the ideal Ex and is zero on
Ed

x . Clearly, 0 ≤ S ≤ T . So, by our hypothesis, there exists a positive
orthomorphism R : F → F with S = RT . In particular, note that R agrees
with the identity operator on T (Ex), and so by Theorem 2.48 the operator
R also agrees with the identity operator on the ideal generated by T (Ex).
Thus,

0 ≤ Tx ∧ Ty = R(Tx ∧ Ty) = R(Tx) ∧ R(Ty) = Tx ∧ Sy = Tx ∧ 0 = 0 ,

and so Tx ∧ Ty = 0. That is, T is a lattice homomorphism, and the proof
is finished.

Now consider a majorizing vector subspace G of a Riesz space E, and
let T : G → F be a positive operator, where F is Dedekind complete. We
already know (Theorem 1.33) that the convex set E(T ) of all positive exten-
sions of T to all of E is not merely nonempty but also has extreme points.
In case G is a Riesz subspace and T is a lattice homomorphism, we have
also seen (in the proof of Theorem 2.29) that the extreme points of E(T )
are lattice homomorphisms. We are now in the position to establish the
converse of the last statement, i.e., that the lattice homomorphisms are pre-
cisely the extreme points of E(T ). This result is due to Z. Lipecki [114] and
W. A. J. Luxemburg [126].

Theorem 2.51 (Lipecki–Luxemburg). Let G be a majorizing Riesz subspace
of a Riesz space E, and let T : G → F be a lattice homomorphism, where
F is Dedekind complete. Then an operator S of (the nonempty convex set)
E(T ) is an extreme point of E(T ) if and only if S is a lattice homomorphism.

Proof. The proof of Theorem 2.29 shows that the extreme points of E(T )
are lattice homomorphisms.

For the converse assume that S ∈ E(T ) is a lattice homomorphism and
that S = αS1 +(1−α)S2 holds for some S1, S2 ∈ E(T ) and some 0 < α < 1.
To finish the proof we have to show that S1 = S2 = S.

Since 0 ≤ αS1 ≤ S holds, it follows from Theorem 2.50 that there exists
a positive orthomorphism R ∈ Orth(F ) with αS1 = RS. Also, since S1 and
S are both extensions of T , we have S1x = Sx = Tx for each x ∈ G, and so

R(Sx) = αS1x = αSx = [αI](Sx)

holds for all x ∈ G. In other words, R and αI agree on S(G). Since G
majorizes E, then band generated by S(G) includes S(E). Therefore,

αS1x = R(Sx) = αS(x)
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holds for all x ∈ E, and so S1 = S. Similarly, S2 = S, and the proof is
finished.

The range and kernel of an orthomorphism are related as follows.

Theorem 2.52. If T : E → E is an orthomorphism on an Archimedean
Riesz space, then Ker (T ) = [T (E)]d.

Proof. Let T : E → E be an orthomorphism. If x ∈ [T (E)]d, then x ⊥ T (y)
holds for all y ∈ E, and so T (x) ⊥ T (y) for each y ∈ E. In particular, we
have T (x) ⊥ T (x), and so T (x) = 0. That is, x ∈ Ker (T ), and therefore
[T (E)]d ⊆ Ker (T ).

For the reverse inclusion, let x ∈ E. Then since Ker (T ) is an ideal,
Ker (T ) ⊕ [Ker (T )]d is an order dense ideal (see Theorem 1.36), and so
there exists a net {xα + yα} ⊆ Ker (T )⊕ [Ker (T )]d such that xα + yα−→o x.
By the order continuity of T , we have T (yα)−→o T (x). But by Theorem 2.36
we have T (yα) ∈ [Ker (T )]d for each α, and so T (x) ∈ [Ker (T )]d. Conse-
quently, T (E) ⊆ [Ker (T )]d holds, and since Ker (T ) is a band, it follows
that Ker (T ) = [Ker (T )]dd ⊆ [T (E)]d. Therefore, Ker (T ) = [T (E)]d holds,
as claimed.

We now turn our attention to f -algebras (the letter “f” comes from
the word function) and their connection with orthomorphisms. The class of
f -algebras was introduced by G. Birkhoff and R. S. Pierce [38] as follows.

Definition 2.53 (Birkhoff–Pierce). A Riesz space E under an associative
multiplication is said to be a Riesz algebra whenever the multiplication
makes E an algebra (with the usual properties), and in addition it satisfies
the following property: If x, y ∈ E+, then xy ∈ E+.

A Riesz algebra E is said to be an f-algebra whenever x∧y = 0 implies
(xz) ∧ y = (zx) ∧ y = 0 for each z ∈ E+.

Now let E be an f -algebra. Then for each fixed y ∈ E+ the mappings
x �→ xy and x �→ yx (from E to E) are clearly positive orthomorphisms. In
particular, for each y ∈ E the mappings

x �→ xy = xy+ − xy− and x �→ yx = y+x − y−x

are both orthomorphisms on E. In the sequel, we shall take advantage of the
properties of orthomorphisms to study the algebraic structure of f -algebras.

Theorem 2.54. In any f-algebra x ⊥ y implies xy = yx = 0.

Proof. Assume at the beginning that x ∧ y = 0 holds. Then (xy) ∧ y = 0,
and so xy = (xy) ∧ (xy) = 0. Now if x ⊥ y holds, then by the preceding
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case we have

xy = (x+ − x−)(y+ − y−) = x+y+ − x−y+ − x+y− + x−y− = 0 .

By the symmetry of the situation yx = 0, and the proof is finished.

An immediate consequence of the preceding theorem is the following.

Corollary 2.55. If x is a vector in an f -algebra, then x2 =(x+)2 + (x−)2≥0.

We shall show next that every Archimedean f -algebra is necessarily a
commutative algebra. This remarkable result is due to I. Amemiya [19] and
G. Birkhoff and R. S. Pierce [38]; see also G. Birkhoff [37, p. 405].

Theorem 2.56 (Amemiya–Birkhoff–Pierce). Every Archimedean f-algebra
is commutative.

Proof. Fix some y ∈ E and note that the two formulas T (x) = xy and
S(x) = yx define orthomorphisms on E. Since S(y) = T (y) = y2 holds, it
follows from Theorem 2.48 that S = T on Ey. On the other hand, if x ∈ Ed

y ,
then (by Theorem 2.54) S(x) = T (x) = 0. Thus, S = T holds on the order
dense ideal Ey ⊕ Ed

y , and consequently (by Theorem 2.48) S = T holds on
E. In other words, yx = xy for all x ∈ E (and all y ∈ E). That is, E is a
commutative algebra, as desired.

The above elegant proof is due to A. C. Zaanen [196]. Now let E be
an Archimedean f -algebra with a multiplicative unit vector e. In view of
e = e2 ≥ 0, we see that e must be a positive vector. On the other hand,
since e ∧ x = 0 implies x = x ∧ x = (xe) ∧ x = 0, it follows that e is
a weak order unit, and therefore x ∧ ne ↑ x must hold for each x ∈ E+.
Surprisingly enough, B. de Pagter [158] has shown that, in fact, {x ∧ ne}
converges relatively uniformly to x. The details follow.

Theorem 2.57 (de Pagter). Let E be an Archimedean f-algebra with a
multiplicative unit e. Then for each x ∈ E+ and each n ∈ N we have

0 ≤ x − x ∧ ne ≤ 1
nx2 .

Proof. Let x ∈ E+ be fixed. From (ne − x ∧ ne) ∧ (x − x ∧ ne) = 0, it
follows that

[
1
nx(ne− x∧ ne)

]
∧ (x− x∧ ne) = 0. Taking into account that

y �→
(

1
nx2
)
y is a lattice homomorphism, we see that[

x −
(

1
nx2
)
∧ x
]
∧ (x − x ∧ ne) =

[
1
nx(ne − x ∧ ne)

]
∧ (x − x ∧ ne) = 0 .

Now combine the last identity with the relation

0 ≤ x − x ∧ ne ≤ x =
(

1
nx2
)
∧ e +

[
x −
(

1
nx2
)
∧ e
]

≤ 1
nx2 +

[
x −
(

1
nx2
)
∧ e
]
,

to obtain that 0 ≤ x − x ∧ ne ≤ 1
nx2 for all n.
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It is an interesting property that in a Riesz space E, if we fix a vector
e > 0, then there exists at most one algebra multiplication on E that makes
E an f -algebra having e as its unit vector.

Theorem 2.58. Let E be an Archimedean Riesz space and let e > 0. Then
there exists at most one product on E that makes E an f-algebra having e
as its multiplicative unit.

Proof. Assume that two products · and � make E an f -algebra with e
as a unit for both products. Then for each fixed y ∈ E the orthomorphism
T (x) = y ·x − y � x satisfies T (e) = 0. Since e is (in this case) a weak order
unit, we have Be = E, and so from Theorem 2.48 it follows that T = 0.
That is, y ·x = y � y holds for all x ∈ E (and all y ∈ E).

At this point let us bring into the picture the orthomorphisms.

Theorem 2.59. For every Archimedean Riesz space E, the Riesz space
Orth(E) under composition is an Archimedean f-algebra, having the iden-
tity operator I as its multiplicative unit. Moreover, Orth(E) is an f-
subalgebra of Orth(Eδ).

Proof. It should be clear that under composition Orth(E) is an Archime-
dean Riesz algebra with the identity operator as a multiplicative unit.

To see that Orth(E) is an f -algebra, let S, T ∈ Orth(E) satisfy S∧T = 0,
and let 0 ≤ R ∈ Orth(E). If x ∈ E+, then Sx∧Tx = [S ∧T ](x) = 0 implies
[RS ∧ T ](x) = RSx ∧ Tx = 0, and so (RS) ∧ T = 0. On the other hand,
if Rn = R ∧ nI, then Rnx ↑ Rx holds for all x ∈ E+, and so (by the
order continuity of S) it follows that SRn ↑ SR in Orth(E). Therefore,
(SRn)∧ T ↑ (SR)∧ T likewise holds in Orth(E). Now since S ∧ T = 0 and
0 ≤ SRn ≤ nS, we see that (SRn) ∧ T = 0 holds for all n, and therefore
(SR) ∧ T = 0.

As an application of the preceding connection between f -algebras and
orthomorphisms, we shall show that the adjoint of an orthomorphism is
again an orthomorphism.

Theorem 2.60. If T : E → E is an orthomorphism on a Riesz space, then
its adjoint T ′ : E∼ → E∼ is likewise an orthomorphism.

Moreover, the operator T �→ T ′, from Orth(E) to Orth(E∼), is a lattice
homomorphism, i.e., ∣∣T ′∣∣ = |T |′

holds for all T ∈ Orth(E).
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Proof. We can assume that T : E → E is a positive orthomorphism. From
Theorems 2.57 and 2.59 we have 0 ≤ T − T ∧ nI ≤ 1

nT 2 for all n, and so

0 ≤ T ′ − T ′ ∧ nI ′ ≤ T ′ − (T ∧ nI)′ ≤ 1
n

(
T ′)2

also holds for all n. This easily implies that T ′ is an orthomorphism.
For the last part, let T ∈ Orth(E) be fixed. If 0 ≤ f ∈ E∼ and x ∈ E+,

then from Lemma 1.75 it follows that〈
|T |′f, x

〉
=
〈
f, |T |x

〉
=
〈
f, |Tx|

〉
≤
〈∣∣T ′∣∣f, x

〉
.

Therefore, |T |′ ≤
∣∣T ′∣∣ holds, and since

∣∣T ′∣∣ ≤ |T |′ is trivially true, we
see that

∣∣T ′∣∣ = |T |′, as required.

When the order dual of a Riesz space separates its points, an order
bounded operator is an orthomorphism if and only if its adjoint is an ortho-
morphism. This is due to A. W. Wickstead [191].

Theorem 2.61 (Wickstead). Let E be a Riesz space such that E∼ separates
the points of E. Then an order bounded operator T : E → E is an ortho-
morphism if and only if its adjoint T ′ : E∼ → E∼ is an orthomorphism.

Proof. By Theorem 2.60 we know that if T is an orthomorphism, then T ′ is
an orthomorphism. For the converse, assume that T ′ is an orthomorphism.
Then by Theorem 2.60 the operator T ′′ : E∼∼ → E∼∼ is also an orthomor-
phism. Now taking into account the facts that E is a Riesz subspace of E∼∼

(Theorem 1.69) and T ′′ agrees with T on E, it is a routine matter to verify
that T : E → E is itself an orthomorphism.

Now let E be an Archimedean f -algebra. Then a mapping u �→ Tu from
E to Orth(E) can be defined by Tu(x) = ux for each x ∈ E (and u ∈ E).
It is easy to see that u �→ Tu is a multiplication preserving operator. When
E has a multiplicative unit, then u �→ Tu is an onto f -isomorphism (i.e.,
a lattice isomorphism that preserves multiplication). This result is due to
A. C. Zaanen [196] .

Theorem 2.62 (Zaanen). Let E be an Archimedean f-algebra with a mul-
tiplicative unit. Then u �→ Tu (where Tu(x) = ux) is an f-isomorphism
from E onto Orth(E); and therefore, subject to this f-isomorphism, we have
Orth(E) = E. In particular, for each Archimedean Riesz space E we have
Orth(Orth(E)) = Orth(E).

Proof. Let e > 0 denote the multiplicative unit vector of E. To see that
the mapping u �→ Tu is onto, let T ∈ Orth(E). Then the orthomorphism
S(x) = T (x)− T (e)x satisfies S(e) = 0. Since Be = E holds (since e is also
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a weak order unit), it follows that S = 0 on E, and so T (x) = T (e)x holds
for all x ∈ E. That is, T = Tu holds for u = T (e), and so u �→ Tu is onto.

To finish the proof note that u �→ Tu is one-to-one, and then apply
Theorem 2.15 by observing that Tu ≥ 0 holds if and only if u ≥ 0.

Theorem 2.62 justifies the name multiplication operator as an alter-
native name for orthomorphisms used by several authors.

We list below a few important f -algebras with multiplicative units.

(1) The Riesz space C(X) of all continuous real-valued functions on
a topological space X (pointwise operations; multiplicative unit is
the constant function one).

(2) The Riesz space Cb(X) of all (uniformly) bounded continuous real-
valued functions on a topological space X (pointwise operations;
multiplicative unit is the constant function one).

(3) The Riesz space �∞(X) of all bounded real-valued functions on a
nonempty set X (pointwise operations; multiplicative unit is the
constant function one).

(4) The Riesz space R
X of all real-valued functions on a nonempty

set X (pointwise operations; multiplicative unit is the constant
function one).

(5) The Riesz space L∞(µ) of all almost everywhere bounded real-
valued functions on a measure space (X, Σ, µ) with the pointwise
operations and multiplicative unit the constant function one; al-
most everywhere equal functions are identified.

(6) The Riesz space M of all measurable functions on a measure space
with the pointwise operations, where almost everywhere equal func-
tions are identified.

The rest of the section will be devoted to extension properties of ortho-
morphisms. To do this we shall need the concept of the universal completion
of an Archimedean Riesz space.

Recall that a Riesz space is called laterally complete whenever every
set of pairwise disjoint positive vectors has a supremum. A Riesz space that
is at the same time laterally complete and Dedekind complete is referred to
as a universally complete Riesz space. If E is an Archimedean Riesz
space, then there exists a unique (up to lattice isomorphism) universally
complete Riesz space Eu (called the universal completion of E) such that
E is Riesz isomorphic to an order dense Riesz subspace of Eu. Identifying
E with its copy in Eu, we have the Riesz subspace inclusion E ⊆ Eu with
E order dense in Eu. In particular, the Dedekind completion Eδ of E can
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be identified with the ideal generated by E in Eu, and so also we have the
Riesz subspace inclusions E ⊆ Eδ ⊆ Eu with E order dense in Eu.

The Riesz space Eu is of the form C∞(X) for some Hausdorff extremally
disconnected compact topological space X. The symbol C∞(X) denotes the
collection of all continuous functions f : X → [−∞,∞] for which the open
set
{
x ∈ X : − ∞ < f(x) < ∞

}
is dense in X. When X is extremally

disconnected (i.e., when the closure of every open set of X is also open),
C∞(X) is a universally complete Riesz space under the pointwise algebraic
and lattice operations. If E has a weak order unit e, then the embedding of
E into C∞(X) can be taken so that e corresponds to the constant function
one on X. For details see [132, Section 50] and [7, Chapter 7].

For our purpose here it is important to observe that C∞(X), with X ex-
tremally disconnected, under the pointwise multiplication is an Archimedean
f -algebra with multiplicative unit the constant function one. Therefore, the
universal completion Eu of any Archimedean Riesz space E is an f -algebra
with a multiplicative unit. (Exercise 13 at the end of this section provides
an alternative approach to the existence of the universal completion using
orthomorphisms.)

Now consider an Archimedean Riesz space E and a positive orthomor-
phism T : E → E. Since T is order continuous, it follows from Theorem 1.65
that the formula

T ∗(x) = sup
{
T (y) : y ∈ E and 0 ≤ y ≤ x

}
, 0 ≤ x ∈ Eδ ,

defines a positive orthomorphism on Eδ that extends the operator T ; see
the proof of Theorem 2.46. Considering Eδ embedded in Eu, we obtain that
the operator T ∗ : Eδ → Eu is an order continuous lattice homomorphism
satisfying T ∗x ∧ y = 0 in Eu whenever x ∧ y = 0 holds in Eδ. Thus, by
Theorem 2.32, the mapping T� : Eu → Eu defined for each 0 ≤ x ∈ Eu via
the formula

T�(x) = sup
{
T ∗(y) : y ∈ Eδ and 0 ≤ y ≤ x

}
= sup

{
T (y) : y ∈ E and 0 ≤ y ≤ x

}
,

extends T ∗ (and hence T ) uniquely to an order continuous lattice homo-
morphism on Eu. Clearly, this extension T� : Eu → Eu is also a positive
orthomorphism on Eu.

Therefore, every orthomorphism T on E extends to a unique ortho-
morphism T ∗ on Eδ, and from there it can be extended uniquely to an
orthomorphism T� on Eu (where there, since Eu is an f -algebra with a
multiplicative unit, it is a multiplication operator). In particular, the map-
pings T �→ T ∗ �→ T� from Orth(E) → Orth(Eδ) → Orth(Eu) are lattice
isomorphisms (into). If we identify Orth(E) with its image in Orth(Eu)
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under T �→ T�, then we see that Orth(E) consists precisely of all ortho-
morphisms on Eu that leave E invariant. In particular, since Eu is an
Archimedean f -algebra with multiplicative unit, every orthomorphism on
E is a multiplication operator. That is, if T ∈ Orth(E), then there
exists some y ∈ Eu such that T (x) = yx holds for all x ∈ E (where the
multiplication is, of course, taken in Eu).

Summarizing the above discussion, we have the following powerful result.

Theorem 2.63. If E is an Archimedean Riesz space, then

Orth(E) =
{
T ∈ Orth(Eu) : T (E) ⊆ E

}
.

Moreover, the following f-algebra inclusions hold:

Orth(E) ⊆ Orth(Eδ) ⊆ Orth(Eu) .

As a first application of the preceding theorem we have the following
result.

Theorem 2.64. Every Archimedean f-algebra E with a multiplicative unit
e can be considered as an (order dense) f-subalgebra of Eu with the same
unit e.

Proof. Embed E (order densely) in Eu in such a way that e corresponds
to 1, the constant function one on Eu = C∞(X). Denote by · the multi-
plicative product of E and by � the pointwise multiplication on C∞(X).

For each fixed u ∈ E, the formula T (x) = u ·x (x ∈ E) defines an ortho-
morphism on E, and hence by Theorem 2.63, it extends to an orthomorphism
on Eu. Consequently, by Theorem 2.62 there exists some w ∈ Eu such that
T (x) = w�x holds for all x ∈ Eu. In particular, u = u·e = T (e) = w�e = w.
Thus, u ·x = u�x holds for all u, x ∈ E, and so � extends · to Eu. In other
words, E is an order dense f -subalgebra of Eu with the same unit e.

With the help of Theorem 2.62 we are now in the position to describe
the orthomorphisms for a number of Riesz spaces. The examples below were
presented first by A. C. Zaanen [196].

Example 2.65. Let E = c0(X) for some nonempty set X. In other words, a
function f : X → R belongs to c0(X) if and only if for each ε > 0 there exists
a finite subset A of X such that |f(x)| < ε holds for all x /∈ A. Then u �→ Tu,
where Tu(f) = uf (pointwise product) for each u ∈ �∞(X) and f ∈ c0(X),
is an f -algebra isomorphism from �∞(X) (the f -algebra of all bounded real-
valued functions on X) onto Orth(E), and so Orth(E) = �∞(X) holds.

The difficult part is to show that the mapping u �→ Tu is onto. To
see this, let T ∈ Orth(E), and note that the universal completion of c0(X)
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is R
X . By Theorem 2.63 the orthomorphism T extends to an orthomor-

phism on R
X , and thus there exists some u ∈ R

X such that T (f) = uf
(pointwise product) holds for each f ∈ E. Now if some countable subset
{x1, x2, . . .} of X satisfies

∣∣u(xn)
∣∣ ≥ n2, then the function g : X → R, de-

fined by g(xn) = 1
n and g(x) = 0 for x /∈ {x1, x2, . . .}, belongs to E and

satisfies
∣∣u(xn)g(xn)

∣∣ ≥ n. This implies that T (g) = ug /∈ E, which is a
contradiction. This argument shows that u ∈ �∞(X), and so T = Tu.

Example 2.66. Let X be a locally compact Hausdorff topological space,
and let E = Cc(X), the f -algebra of all continuous real-valued functions
on X with compact support. We claim that u �→ Tu, where Tu(f) = uf
(pointwise product) for each u ∈ C(X) and f ∈ Cc(X), is an f -algebra
isomorphism from C(X) onto Orth(E), and so Orth(Cc(X)) = C(X) holds.

Again the difficult part is to show that u �→ Tu is onto. Start by observ-
ing that C(X) is an f -algebra with multiplicative unit the constant function
1. Hence, by Theorem 2.64, C(X) can be embedded (order densely) in its
universal completion in such a way that C(X) is an f -subalgebra with the
same multiplicative unit 1. Since E = Cc(X) is order dense in C(X), the
universal completion of C(X) serves equally well as the universal completion
of E. Thus, the following f -algebra inclusions hold: E ⊆ C(X) ⊆ Eu. Now
let 0 ≤ T ∈ Orth(E). By Theorem 2.63, the operator T can be considered
as an orthomorphism on Eu. Therefore, there exists some 0 ≤ u ∈ Eu such
that T (f) = uf holds for each f ∈ E. Note that u = T (1).

Next, observe that for every open set V , the set{
f ∈ Cc(X) : f = 0 on V

}
is a band of E. Thus, by Theorem 2.36, if f ∈ Cc(X) vanishes on some open
set V , then T (f) = 0 also holds on V . In particular, if f, g ∈ Cc(X) satisfy
f = g on V , then they also satisfy T (f) = T (g) on V . Now for each open
set V with compact closure, choose fV ∈ Cc(X) such that 0 ≤ fV ≤ 1 and
fV = 1 on V . Then fV (x) ↑V 1 holds for each x ∈ X, and so by the order
continuity of T we have T (fV ) ↑V T (1) = u in Eu. On the other hand, in
view of T (fV ) = T (fW ) on V ∩ W , it follows that T (fV )(x) ↑V h(x) holds
for some h ∈ C(X). This implies T (fV ) ↑V h in C(X), and so T (fV ) ↑V h
also holds in Eu. Thus, u = h ∈ C(X). This establishes that u �→ Tu from
C(X) to Orth(Cc(X)) is onto.

Example 2.67. Assume that (X, Σ, µ) is a σ-finite measure space, and let
E = Lp(µ) with 0 < p < ∞. Then u �→ Tu, where Tu(f) = uf (pointwise
product) for each f ∈ E, is an f -algebra isomorphism from L∞(µ) onto
Orth(E), and therefore Orth(Lp(µ)) = L∞(µ) holds.

That the mapping is onto is the only thing that needs proof. To see
this, let T ∈ Orth(E). Note that Eu is the f -algebra M of all equivalence
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classes of µ-measurable functions. By Theorem 2.63, the operator T can be
considered as an orthomorphism on M, and so there exists some u ∈ M
such that T (f) = uf holds for all f ∈ E. From standard arguments, it easily
follows that u ∈ L∞(µ). Thus, T = Tu holds, and hence u �→ Tu is onto.

Our discussion concludes with a few bibliographical remarks. As we
have mentioned before, there exists a vast bibliography on orthomorphisms.
The theory of orthomorphisms was originated with H. Nakano [148] and
was developed by A. Bigard and K. Keimel [34] and P. F. Conrad and
J. E. Diem [50] by means of representation theory. Along these lines also
were the works of A. Bigard [33], A. Bigard, K. Keimel, and S. Wolfen-
stein [35], M. Meyer [137, 138, 139], and A. W. Wickstead [191, 192].
Orthomorphisms without the use of representation theorems were inves-
tigated by A. C. Zaanen [196], S. J. Bernau [31], C. D. Aliprantis and
O. Burkinshaw [13], and M. Duhoux and M. Meyer [55]. A thorough study
of f -algebras and orthomorphisms is included in the Ph.D. dissertation of
B. de Pagter [158], and in C. B. Huijsmans and B. de Pagter [77]. Other
interesting works on orthomorphisms are those of Y. A. Abramovich [3],
Y. A. Abramovich, A. I. Veksler, and A. V. Koldunov [4], G. Birkhoff
and R. S. Pierce [38], R. C. Buck [44], H. O. Flösser, G. Gierz, and
K. Keimel [63], W. A. J. Luxemburg [126], A. R. Schep [177], W. A. J. Lux-
emburg and A. R. Schep [128], B. de Pagter [160], and W. Wils [195].

Exercises

1. If T : E → F is an order bounded operator between two Archimedean
Riesz spaces and T preserves disjointness, then show there exist two lattice
homomorphisms R,S : E → F satisfying T = R − S.

2. Show that a positive operator T : E → E on a Riesz space is an ortho-
morphism if and only if I + T is a lattice homomorphism.

3. Show that if E is Dedekind complete, then the range of every orthomor-
phism on E is an ideal.

4. (Luxemburg [126]) Let T : E → E be an order continuous lattice homo-
morphism on an Archimedean Riesz space. Show that T is an orthomor-
phism if and only if 0 < x ∈ [ Ker (T )]d implies x ∧ Tx > 0.

5. Let E be Dedekind complete. By Theorem 2.45 we know that Orth(E) is
the band generated in Lb(E) by the identity operator I, and so Orth(E)
is a projection band of Lb(E). This exercise presents a description, due
to A. R. Schep [177], of the order projection of Lb(E) onto Orth(E).

Show that the projection of an arbitrary operator 0 ≤ T ∈ Lb(E)
onto Orth(E) is given by

inf
{ n∑

i=1

PiTPi : each Pi is an order projection and
n∑

i=1

Pi = I
}

.
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6. Let (P) denote any one of the properties: Dedekind completeness, Dede-
kind σ-completeness, projection property, principal projection property,
and uniform completeness.

Show that if a Riesz space E has property (P), then Orth(E) also has
property (P).

7. (Zaanen [196]) Show that if E is the Riesz space of all continuous piece-
wise linear functions on [0, 1], then Orth(E) = {αI : α ∈ R}.

8. Let E be a Dedekind complete Riesz space. Use Theorem 1.50 to present
an alternative proof of the fact that Orth(E) under the pointwise algebraic
and lattice operations is a Riesz space.

9. (de Pagter [158]) Show that an order bounded operator T : E → E on
an Archimedean Riesz space is an orthomorphism if and only if it leaves
invariant every uniformly closed ideal of E. [Hint : Use Theorem 2.57. ]

10. (de Pagter [158]) Let E and F be two Archimedean Riesz spaces with F
Dedekind complete. Show that for each S ∈ Orth(E) and R ∈ Orth(F ),
the operator T �→ RTS, from Lb(E,F ) to Lb(E,F ), is an orthomor-
phism. [Hint : Use Theorem 2.57. ]

11. Let T : E → F be a positive operator between two Riesz spaces with F
Dedekind complete. If R and S ate two positive orthomorphisms on F ,
then show that

(R ∧ S)T = RT ∧ ST and (R ∨ S)T = RT ∨ ST

hold in Lb(E,F ). Similarly, if R and S are two orthomorphisms on E,
then show that

T (R ∧ S) = TR ∧ TS and T (R ∨ S) = TR ∨ TS .

12. For an f -algebra E establish the following statements:
(a) |uv| = |u|·|v| holds for all u, v ∈ E.
(b) If E is Archimedean with a multiplicative unit, then u2 = 0 holds if

and only if u = 0.
(c) If E is Archimedean with a multiplicative unit, then u ⊥ v holds if

and only if uv = 0.
[Hint : For each u ∈ E consider the orthomorphism x �→ ux. ]

13. This exercise presents by steps another approach to the existence of the
universal completion using the notion of orthomorphisms. For our dis-
cussion let E be a fixed Archimedean Riesz space.
(a) Using Theorems 1.65 and 2.32 show that E has at most one (up to

a lattice isomorphism) universal completion.
(b) An order bounded operator T : A → E, where A is an order dense

ideal of E, is called a generalized orthomorphism if u ⊥ v in A
implies Tu ⊥ v in E. If T is in addition positive, then T is called a
generalized positive orthomorphism.

Show that every generalized positive orthomorphism is order con-
tinuous, and that every generalized orthomorphism can be written
as a difference of two generalized positive orthomorphisms.
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(c) Let Orth∞(E) denote the collection of all generalized orthomor-
phisms. In Orth∞(E) we introduce an equivalence relation by let-
ting S ∼ T whenever S = T holds on an order dense ideal of E. As
usual, the equivalence classes of Orth∞(E) are denoted by Orth∞(E)
again.

Show that under the pointwise algebraic and lattice operations
Orth∞(E) is an Archimedean laterally complete f -algebra with unit
the identity operator. (Multiplication is, of course, the composition
operation.)

(d) Show that if E is Dedekind complete, then Orth∞(E) is a universally
complete f -algebra with a multiplicative unit.

(e) Assume that E is Dedekind complete with a weak order unit e. Then
Ee is an order dense ideal of E. By Theorem 2.49, for each x ∈ Ee

there exists a unique orthomorphism Tx : Ee → Ee with Tx(e) = x.
Clearly, Tx ∈ Orth∞(E). Thus, a mapping x �→ Tx from Ee to
Orth∞(E) can be defined such that Te = I holds.

Show that x �→ Tx is an order continuous lattice isomorphism
whose range is order dense in Orth∞(E). Also show (by using The-
orem 2.32) that x �→ Tx extends to a lattice isomorphism from E
into Orth∞(E) (and hence, in this case, Orth∞(E) is the universal
completion of E).

(f) Let E be a Dedekind complete Riesz space. Pick a maximal disjoint
set {ei : i ∈ I} of nonzero positive vectors of E, and let Ei denote
the band generated by ei in E. For each x ∈ E, let xi denote the
projection of x onto Ei, i.e., xi = Pei

(x). Consider Ei embedded in
Orth∞(E) as determined by (e) above.

Show that the mapping x �→ {Txi
}, from E to the univer-

sally complete Riesz space
∏

i∈IOrth∞(Ei), is a lattice isomorphism
whose range is order dense (and hence

∏
i∈IOrth∞(Ei) is the uni-

versal completion of E).
(g) For the general case, embed E into its Dedekind completion Eδ and

then use part (f) to establish that E has a universal completion.



Chapter 3

Topological Considerations

It is well known that operator theory is intrinsically related to the topologi-
cal structures associated with the spaces upon which the operators act. The
theory of positive operators is no exception to this phenomenon. The vari-
ous topological notions provide an invaluable insight into the properties of
operators. This chapter is devoted to the basic topological concepts needed
for the study of positive operators. The presentation (although concise) is
quite complete. The discussion focuses on locally convex spaces, Banach
spaces, and locally solid Riesz spaces.

3.1. Topological Vector Spaces

The basic concepts from the theory of topological vector spaces needed for
our study will be reviewed briefly in this section. For detailed treatments of
the theory of topological vector spaces the interested reader can consult the
references [57, 73, 76, 99, 169, 173, 194]. All vector spaces are assumed
to be real vectors spaces. Unless otherwise stated, all topological spaces are
considered to be Hausdorff. We shall adhere to the following topological
notation: If (X, τ) is a topological space and A is a subset of X, then (A, τ)
will denote the set A equipped with the topology induced by τ .

The standard notation involving subsets of a vector space will be em-
ployed. For instance, if A and B are two arbitrary subsets of a vector space,
then their algebraic sum and their algebraic difference are defined by

A + B := {a + b : a ∈ A and b ∈ B} ,

and
A − B := {a − b : a ∈ A and b ∈ B} .

133
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Also if A is a subset of a vector space, then for each λ ∈ R we let

λA := {λa : a ∈ A} .

Let X be a vector space. Then a nonempty subset A of X is said to be:

(1) convex, whenever x, y ∈ A and 0≤λ≤1 imply λx + (1−λ)y ∈ A.
(2) circled (or balanced), whenever x ∈ A and |λ| ≤ 1 imply λx ∈ A.
(3) absorbing, if for each x ∈ X there exists some λ > 0 satisfying

x ∈ λA (or equivalently, if there exists some λ > 0 with λx ∈ A).

It can be shown by induction that a subset A of X is convex if and only if
it satisfies the following property: For any arbitrary vectors x1, . . . , xn ∈ A
and any arbitrary nonnegative scalars λ1, . . . , λn with λ1 + · · · + λn = 1 we
have λ1x1 + · · · + λnxn ∈ A.1 The convex hull co A is the smallest (with
respect to inclusion) convex set that includes A. An easy argument shows
that co A consists of all convex combinations of A, i.e.,

co A :=
{ n∑

i=1

λixi : xi ∈ A, λi ≥ 0, and
n∑

i=1

λi = 1
}

.

Similarly, it can be seen that the set
{ n∑

i=1

λixi : xi ∈ A for each i and
n∑

i=1

|λi| ≤ 1
}

is the convex circled hull of A; i.e., the smallest convex and circled set
that includes A.2

A topology τ on a vector space X is called a linear topology whenever
the addition function

(x, y) �→ x + y , from X × X to X,

and the scalar multiplication function

(λ, x) �→ λx , from R × X to X ,

are both continuous. The pair (X, τ) is then called a topological vector
space. It should be immediate that in a topological vector space the closure
of a circled set is circled, and the closure of a convex set is convex.

Now let (X, τ) be a topological vector space. Since x �→ a + x is a
homeomorphism, it easily follows that every τ -neighborhood at a is of the
form a+V , where V is a τ -neighborhood of zero. Thus, the τ -neighborhoods
of zero determine the structure of τ . The continuity of λ �→ λx at zero (x
fixed) guarantees that each τ -neighborhood of zero is an absorbing set. On

1The vectors of the form λ1x1 + · · · + λnxn, where xi ∈ A, λi ≥ 0, and
λ1 + · · · + λn = 1, are referred to as convex combinations of A.

2The convex circled hull of A is also known as the absolute convex hull of A.
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the other hand, the continuity of (x, y) �→ x + y at (0, 0) implies that for
each τ -neighborhood V of zero there exists another τ -neighborhood W of
zero with W + W ⊆ V (and so, by induction, for each τ -neighborhood
V of zero and each n there exists another τ -neighborhood W of zero with
W+· · ·+W ⊆ V , where the sum to the left of the inclusion has n summands).
Now it is not difficult to see that the τ -neighborhood system at zero has a
base B such that:

(a) Each V ∈ B is circled and absorbing.
(b) For each V ∈ B there exists some W ∈ B with W + W ⊆ V .

Note that if V, W ∈ B satisfy W +W ⊆ V , then W ⊆ V holds. (Indeed,
if x ∈ W , then (x+W )∩W �= �© holds, which implies x ∈ V .) In particular,
it follows that the τ -closed, circled τ -neighborhoods of zero form a base for
the τ -neighborhoods at zero. In the converse direction, if B is a family of
subsets of a vector space X such that

(i) for each V ∈ B we have 0 ∈ V ,
(ii) for each V, W ∈ B there exists some U ∈ B with U ⊆ V ∩ W ,
(iii) each V ∈ B is circled and absorbing, and
(iv) for each V ∈ B there exists some W ∈ B with W + W ⊆ V ,

then there exists a unique linear topology τ on X having B as a base at
zero. It should be observed that the linear topology τ is Hausdorff if and
only if

⋂
{V : V ∈ B} = {0}. As we have mentioned before, unless otherwise

stated, this condition will be assumed throughout this book.
A subset A of a topological vector space (X, τ) is said to be:

(4) τ-bounded, whenever for each τ -neighborhood V of zero there
exists some λ > 0 satisfying λA ⊆ V (or, equivalently, whenever
for each τ -neighborhood V of zero there exists some λ > 0 satisfying
A ⊆ λV ), and

(5) τ-totally bounded, whenever for each τ -neighborhood V of zero
there is a finite subset Φ of A such that A ⊆

⋃
x∈Φ(x+V ) = Φ+V .

Clearly, subsets, sums, and scalar multiples of τ -bounded sets are likewise
τ -bounded. Also, it should be clear that:

τ -compactness =⇒ τ -total boundedness =⇒ τ -boundedness .

The most useful characterizations of totally bounded sets are included in
the next theorem.

Theorem 3.1. For a subset A of a topological vector space (X, τ) the fol-
lowing statements are equivalent:

(1) A is τ -totally bounded.
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(2) For each τ -neighborhood V of zero there exists a finite subset Φ of
X satisfying A ⊆ Φ + V .

(3) For each τ -neighborhood V of zero there exists a finite subset Φ of
X satisfying A ⊆ Φ + V + V .

(4) For each τ -neighborhood V of zero there exists a τ -totally bounded
set B satisfying A ⊆ B + V .

Proof. The implications (1) =⇒ (2) =⇒ (3) =⇒ (4) are obvious.

(4) =⇒ (1) Let V be a τ -neighborhood of zero. Fix a circled τ -neighbor-
hood W of zero with W +W +W +W ⊆ V . Now pick a τ -totally bounded set
B with A ⊆ B +W , and then select a finite subset D of B with B ⊆ D+W .
Thus, A ⊆ D+W +W holds, and we can assume that A∩(x+W +W ) �= �©
for each x ∈ D. Given x ∈ D, fix some ax ∈ A ∩ (x + W + W ), and note
that the set Φ = {ax : x ∈ D} is a finite subset of A. Now if a ∈ A, then
there exist x ∈ D and v, w ∈ W with a = x + v + w. Therefore,

a = ax + (x − ax) + v + w ∈ ax + W + W + W + W ⊆ ax + V ,

and so A ⊆ Φ + V holds, proving that A is a τ -totally bounded set.

It is important to know that the algebraic operations on totally bounded
sets produce totally bounded sets.

Theorem 3.2. If A and B are τ -totally bounded subsets of a topological
vector space (X, τ), then λA, A + B, and A are likewise τ -totally bounded.

Proof. We prove the statement about the closure. Given a circled τ -
neighborhood V of zero, choose a finite subset Φ of A with A ⊆ Φ + V .
Now if x ∈ A, then (x + V ) ∩ (Φ + V ) �= �©, and so there exist u, v ∈ V
and a ∈ Φ with x + u = a + v. Thus, x = a + v − u ∈ Φ + V + V , and
so A ⊆ Φ + V + V holds, and the total boundedness of A follows from
Statement (3) of Theorem 3.1.

Continuous linear mappings between topological vector spaces carry to-
tally bounded sets to totally bounded sets.

Theorem 3.3. Let T : (X, τ) → (Y, ξ) be an operator between two topological
vector spaces. If T is continuous on the τ -bounded subsets of X, then T
carries τ -totally bounded sets to ξ-totally bounded sets.

Proof. Let A be a τ -totally bounded subset of X, and let V be an arbitrary
ξ-neighborhood of zero. Since A−A is τ -totally bounded and by our hy-
pothesis T : (A−A, τ) → (Y, ξ) is continuous, there exists a τ -neighborhood
W of zero satisfying (A−A) ∩ W ⊆ (A−A) ∩ T−1(V ). Now pick a finite
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subset Φ of A with A ⊆ Φ + W , and note that T (A) ⊆ T (Φ) + V holds.
That is, T (A) is a ξ-totally bounded set, as desired.

Before proceeding further, let us mention two properties that will be
used extensively in the sequel (the easy proofs of which can be furnished by
the reader).

A subset A of a vector space is:

(i) circled if and only if |λ| ≤ |µ| implies λA ⊆ µA, and

(ii) convex if and only if λA + µA = (λ + µ)A holds for all λ, µ ≥ 0.

The locally convex topologies are the most important linear topologies.
A linear topology τ on a vector space X is called locally convex (and
(X, τ) is called a locally convex space) whenever τ has a base at zero
consisting of convex sets. Since in a topological vector space the closure of a
convex set is also convex, it follows that a linear topology is locally convex
if and only if the τ -closed, convex, and circled neighborhoods of zero form
a base for the neighborhood system at zero. The role of convexity will be
discussed below.

Recall that in a topological vector space the closure of the convex circled
hull of a set A is called the convex, circled, closed hull of A. As a first
sample, we shall establish that in a locally convex space the convex, circled,
closed hull of a totally bounded set is also totally bounded. This important
result is essentially due to S. Mazur [136].

Theorem 3.4 (Mazur). Let (X, τ) be a locally convex space. If A is a τ -
totally bounded subset of X, then its convex, circled, and τ -closed hull (and
hence its convex τ -closed hull) is likewise τ -totally bounded.

In particular, if X is a Banach space, then the convex closed hull of any
compact subset of X is likewise a compact set.

Proof. Let A be a τ -totally bounded subset of (X, τ). Denote by Ac the
convex, circled hull of A. By Theorem 3.2, it is enough to show that Ac is
τ -totally bounded.

Assume at the beginning that A is a finite set, say A = {a1, . . . , an}.
Then

Ac =
{ n∑

i=1

λiai :
n∑

i=1

|λi| ≤ 1
}

.

The set K =
{
(λ1, . . . , λn) ∈ R

n : |λ1| + + · · · + |λn| ≤ 1
}

is closed and
bounded in R

n and hence is compact. Since the function f : K → Ac,
defined by f(λ1, . . . , λn) = λ1a1 + · · · + λnan, is continuous and onto, Ac is
a τ -compact subset of X. In particular, Ac is also a τ -totally bounded set.
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For the general case, let V be a convex, circled τ -neighborhood of zero.
Pick a finite subset Φ of A with A ⊆ Φ + V . Now let x ∈ Ac. Then
x = λ1x1+ · · ·+λnxn holds with |λ1|+ · · ·+ |λn| ≤ 1 and xi ∈ A (1 ≤ i ≤ n).
Write xi = ui + vi with ui ∈ Φ and vi ∈ V , and note that

x =
n∑

i=1

λixi =
n∑

i=1

λiui +
n∑

i=1

λivi ∈ Φc + V .

Thus, Ac ⊆ Φc + V holds. By the preceding case Φc is a τ -totally bounded
set, and so by Condition (4) of Theorem 3.1 the set Ac must be a τ -totally
bounded set.

Let A be a convex and absorbing subset of a vector space X. Then the
Minkowski functional (or the supporting functional or the gauge) pA

of A is defined by

pA(x) := inf
{
λ > 0: x ∈ λA

}
, x ∈ X .

Note that pA is indeed a function from X to R. The Minkowski functional
pA satisfies the following properties:

(a) pA(x) ≥ 0 for all x ∈ X.
(b) pA(λx) = λpA(x) for all λ ≥ 0 and all x ∈ X.
(c) pA(x + y) ≤ pA(x) + pA(y) for all x, y ∈ X.
(d) If A is also circled, then pA is a seminorm. That is, in addition

to satisfying (a) and (c), it also satisfies pA(λx) = |λ|pA(x) for all
λ ∈ R and all x ∈ X.

Clearly, (b) and (c) express the fact that the Minkowski functional pA is a
sublinear function.

Now let (X, τ) be a locally convex space. Denote by B the collection of
all τ -neighborhoods of zero that are τ -closed, circled, and convex; clearly B
is a base for the τ -neighborhood system at zero. The collection of seminorms
{PV : V ∈ B} has the following properties (whose easy verifications are left
for the reader):

(i) For each V, W ∈ B we have pV ∩W (x) = max
{
pV (x), pW (x)

}
.

(ii) For each V ∈ B and each λ > 0 we have p
λV

= 1
λpV .

(iii) Each V ∈ B is the closed unit ball of pV . That is,

V =
{
x ∈ X : pV (x) ≤ 1

}
.

Statements (i) and (ii) imply that {pV : V ∈ B} is a saturated family of
seminorms.3

3A family of seminorms that is closed under finite suprema and multiplication
by positive scalars is referred to as a saturated family of seminorms.
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In the converse direction, let {pi : i ∈ I} be a saturated family of semi-
norms on a vector space. Denote by Vi the closed unit ball of pi (i.e.,
Vi = {x : pi(x) ≤ 1}), and note that the family of convex sets {Vi : i ∈ I}
satisfies the necessary properties for determining a (unique) locally convex
topology. This topology is referred to as the locally convex topology
generated by the family of seminorms {pi : i ∈ I}. Note that with
respect to this topology each Vi is also closed. In general, if {pi : i ∈ I} is
a family of seminorms on a vector space (not necessarily saturated), then
the collection of all finite suprema of the positive multiples of {pi : i ∈ I} is
a saturated family of seminorms. This saturated family generates a locally
convex topology, which is referred to as the locally convex topology gener-
ated by the family of seminorms {pi : i ∈ I}. It should be noted that if τ is
the locally convex topology generated by {pi : i ∈ I}, then xα−→τ 0 if and
only if pi(xα) → 0 holds in R for each i ∈ I. Also, a subset A is τ -bounded
if and only if pi(A) is a bounded subset of R for each i ∈ I.

Recapitulating the above discussion, we see that a linear topology on
a vector space is locally convex if and only if it is generated by a family
of seminorms—which can be taken to be saturated. In particular, note
that a locally convex topology that is generated by a family of seminorms
{pi : i ∈ I} is Hausdorff if and only if pi(x) = 0 for all i ∈ I implies x = 0.

Recall that the algebraic dual X∗ of a vector space X is the vector
space consisting of all linear functionals on X. If τ is a linear topology on
X, then the topological dual X ′ of (X, τ) is the vector subspace of X∗

consisting of all τ -continuous linear functionals on X. That is,

X ′ :=
{
f ∈ X∗ : f is τ -continuous

}
.

Following the standard notation, we shall designate the elements of X ′ by
primes (x′, y′, etc.). The continuous linear functionals are characterized as
follows. (Recall that if f is a linear functional on a vector space X, then its
kernel is denoted by Ker f :=

{
x ∈ X : f(x) = 0

}
.)

Theorem 3.5. For a linear functional f on a locally convex space (X, τ)
the following statements are equivalent.

(1) f is τ -continuous.

(2) The kernel of f is a τ -closed vector subspace.

(3) f is bounded on a τ -neighborhood of zero.

(4) There is a τ -continuous seminorm p on X such that
∣∣f(x)

∣∣ ≤ p(x)
holds for all x ∈ X.

Proof. (1) =⇒ (2) Note that Ker f = f−1
(
{0}
)
. Thus, if f is τ -continuous,

then Ker f is a τ -closed vector subspace of X.
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(2) =⇒ (3) Assume that f is nonzero. Fix some x ∈ X with f(x) = 1.
Consequently, x /∈ Ker f , and since Ker f is τ -closed, there exists a circled τ -
neighborhood V of zero with (x+V )∩Ker f = �©. We claim that

∣∣f(y)
∣∣ ≤ 1

holds for all y ∈ V .
To see this, let y ∈ V , and suppose by way of contradiction that we have∣∣f(y)
∣∣ > 1. If α = 1

f(y) , then |α| < 1 holds, and so x − αy ∈ x + V . On the
other hand,

f(x − αy) = f(x) − αf(y) = 0

implies x − αy ∈ Ker f , contrary to (x + V ) ∩ Ker f = �©. Therefore, f is
bounded on V .

(3) =⇒ (4) Pick a circled, convex τ -neighborhood V of zero such that∣∣f(x)
∣∣ ≤ 1 holds for all x ∈ V , and note that

∣∣f(x)
∣∣ ≤ pV (x) for all x ∈ X.

(4) =⇒ (1) Obvious.

The continuous linear functionals on a vector subspace Y of a locally
convex space X are merely the restrictions on Y of the continuous linear
functionals on X.

Theorem 3.6. If f is a continuous linear functional defined on a vector
subspace of a locally convex space (X, τ), then f extends to a continuous
linear functional on (X, τ).

Proof. Let Y be a vector subspace of a locally convex space (X, τ), and
let f : Y → R be a τ -continuous linear functional. Pick a circled, convex
τ -neighborhood V of zero such that |f(y)| ≤ 1 holds for all y ∈ V ∩ Y .
Therefore, f(y) ≤ pV (y) holds for all y ∈ Y . By the Hahn–Banach Theo-
rem 1.25 there exists an extension of f to all of X (which we denote by f
again) satisfying f(x) ≤ pV (x) for all x ∈ X. Thus, |f(x)| ≤ pV (x) holds
for all x ∈ X, and so f is a τ -continuous linear functional on X.

Another property of locally convex spaces is that they have an abundance
of continuous linear functionals.

Theorem 3.7. If Y is a closed vector subspace of a locally convex space
(X, τ) and a /∈ Y , then there exists a τ -continuous linear functional f on X
such that f(y) = 0 for all y ∈ Y and f(a) = 1. In particular, X ′ separates
the points of X.

Proof. Let Z be the vector subspace generated by Y and a, that is,

Z = {y + λa : y ∈ Y and λ ∈ R} .

Define the linear functional f : Z → R by f(y + λa) = λ, and note that
Ker f = Y . Since Y is closed, by Theorem 3.5 the linear functional f : Z → R
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is continuous, and so by Theorem 3.6 it extends continuously to all of X.
This extension satisfies the required properties.

To see that X ′ separates the points on X, let a �= b. This means that
a−b does not belong to the closed vector subspace {0}, and so by the above
there exists some x′ ∈ X ′ satisfying x′(a) − x′(b) = x′(a − b) = 1 �= 0.

Now we turn our attention to separation properties of convex sets by
continuous linear functionals.

Definition 3.8. Let A and B be two (nonempty) subsets of a vector space
X. Then a linear functional x∗ on X is said to

(1) separate A and B, whenever there exists some c ∈ R satisfying
x∗(a) ≥ c for all a ∈ A and x∗(b) ≤ c for all b ∈ B,

(2) strictly separate A and B, whenever there exist some c ∈ R and
some ε > 0 satisfying x∗(a) ≥ c+ ε for all a ∈ A and x∗(b) ≤ c for
all b ∈ B.

The geometrical meanings of separations are shown in the figure below.

A

B

x∗(x) = c

Separation

A

B

x∗(x) = c + ε

x∗(x) = c

Strict Separation

One reason for the importance of locally convex topologies is that the
continuous linear functionals do not merely separate the points but also
separate disjoint open convex sets. The details are explained in the next
few results.

Theorem 3.9. Let C be a convex subset of a locally convex space (X, τ)
such that 0 /∈ C. If C has an interior point, then there exists a nonzero
τ -continuous linear functional x′ on X satisfying x′(x) ≥ 0 for all x ∈ C.

Proof. Let a ∈ C be an interior point of C. Then zero is an interior point
of the convex set K = a − C. Let V be a circled, convex, τ -neighborhood
of zero satisfying V ⊆ K. Clearly, K is an absorbing set.
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Next, note that pK(a) ≥ 1. Indeed, if pK(a) < 1 holds, then there exists
some 0 ≤ λ < 1 with a ∈ λK. Thus, for some v ∈ K we have

a = λv = λv + (1 − λ)0 ∈ K .

This implies 0 ∈ C, which is a contradiction. Hence, pK(a) ≥ 1 holds.
Now consider the vector subspace Y = {λa : λ ∈ R

}
, and define the

nonzero linear functional x′ : Y → R by x′(λa) = λpK(a). Clearly, we have
x′(λa) ≤ pK(λa) for each λ. Since pK is sublinear on X, the Hahn–Banach
Theorem 1.25 guarantees that x′ has a linear extension to all of X, which we
denote by x′ again, satisfying x′(x) ≤ pK(x) ≤ pV (x) for all x ∈ X. From

−x′(x) = x′(−x) ≤ pK(−x) ≤ pV (−x) = pV (x) ,

we see that |x′(x)| ≤ pV (x) holds for all x ∈ X, and so, by Theorem 3.5,
x′ is a nonzero τ -continuous linear functional on X. Finally, note that if
c ∈ C, then

pK(a) − x′(c) = x′(a) − x′(c) = x′(a − c) ≤ pK(a − c) ≤ 1 ,

and so x′(c) ≥ pK(a) − 1 ≥ 0 for all c ∈ C, and the proof is finished.

The next theorem, known as the separation theorem, deals with the
separation of convex sets by continuous linear functionals.

Theorem 3.10 (The Separation Theorem). Let A and B be two disjoint
(nonempty) convex subsets of a locally convex space (X, τ). If either A or
B has an interior point, then there exists a nonzero τ -continuous linear
functional on X that separates A and B.

Proof. Note that 0 /∈ A − B, and A − B is a convex set with an interior
point. By Theorem 3.9, there exists a nonzero τ -continuous linear functional
x′ on X such that x′(x) − x′(y) ≥ 0 holds for all x ∈ A and all y ∈ B.
Put s = inf

{
x′(x) : x ∈ A

}
and t = sup

{
x′(y) : y ∈ B

}
, and note that

−∞ < t ≤ s < ∞ holds. Now if c ∈ R satisfies t ≤ c ≤ s, then we have
x′(x) ≥ c for all x ∈ A and x′(y) ≤ c for all y ∈ B. Therefore, the nonzero
τ -continuous linear functional x′ separates the sets A and B.

In general, two disjoint convex sets cannot be strictly separated by a
continuous linear functional, even when both are closed. However, if one
of them is closed and the other is compact, then strict separation is always
possible. To establish this result, we need the following useful lemma dealing
with the sum of two closed sets.

Lemma 3.11. Let A and B be two subsets of a topological vector space
(X, τ). If A is τ -closed and B is τ -compact, then A + B is τ -closed.
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Proof. Assume that a net {aα+bα} ⊆ A+B, with {aα} ⊆ A and {bα} ⊆ B,
satisfies aα + bα−→τ x in X. By the τ -compactness of B we can assume (by
passing to a subnet) that bα−→τ b ∈ B holds. Hence,

aα = (aα + bα) − bα−→τ x − b = a ,

and since A is τ -closed we get a ∈ A. Thus, x = a + b ∈ A + B, and this
shows that the set A + B is τ -closed.

We are now in the position to establish that two disjoint convex sets, one
of which is closed and the other is compact, can always be strictly separated
by a continuous linear functional.

Theorem 3.12 (The Strict Separation Theorem). Let A and B be two
nonempty disjoint convex subsets of a locally convex space (X, τ). If A is
τ -closed and B is τ -compact, then A and B can be strictly separated by a
τ -continuous linear functional. That is, there exist a τ -continuous linear
functional x′, some c ∈ R, and some ε > 0 such that

x′(x) ≤ c < c + ε ≤ x′(y)

holds for all x ∈ B and all y ∈ A.

Proof. Clearly, A − B is convex, 0 /∈ A − B, and (by Lemma 3.11) A − B
is also τ -closed. Pick a circled, convex τ -neighborhood V of zero satisfying
V ∩ (A−B) = �©. Since zero is an interior point of V , Theorem 3.10 applied
to the pair (V, A−B) guarantees the existence of a nonzero τ -continuous
linear functional x′ on X and some ε ∈ R such that x′(v) ≤ ε for all v ∈ V
and x′(y) − x′(x) ≥ ε for all x ∈ B and y ∈ A. Since V is circled and
absorbing and x′ is nonzero, it is easy to see that ε > 0 must hold. Now put
c = max

{
x′(x) : x ∈ B

}
, and note that x′(x) ≤ c < c + ε ≤ x′(y) holds for

all x ∈ B and y ∈ A.

For a locally convex space (X, τ) the sets of the form
{
x ∈ X : x′(x)≥c

}
,

where x′ is a τ -continuous linear functional on X and c ∈ R, are referred to
as the τ -closed half-spaces.

Theorem 3.13. In a locally convex space (X, τ) the τ -closure of any convex
set is the intersection of all τ -closed half-spaces that include it.

In particular, if two locally convex topologies on a vector space have the
same topological dual, then they also have the same closed convex sets.

Proof. Let A be a τ -closed convex subset of (X, τ). If a /∈ A, then {a} is a
τ -compact convex set that is disjoint from A. Thus by Theorem 3.12 there
exists some x′ ∈ X ′ and some c ∈ R such that x′(x) ≥ c for all x ∈ A and
x′(a) < c. Now from this the desired conclusion follows.
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Recall that a point e of a convex set A is said to be an extreme point
of A whenever e = λx + (1−λ)y with 0 < λ < 1 and x, y ∈ A imply
x = y = e. The extreme points of convex sets play an important role in
analysis, and for this reason conditions that guarantee their existence are
useful.

The next theorem, due to M. Krein and D. Milman [102], gives a topo-
logical condition under which a convex set has an extreme point. This result
has a wide range of applications.

Theorem 3.14 (Krein–Milman). If a convex set C of a vector space X is
compact for some locally convex topology τ on X, then C has an extreme
point. Moreover, C is the τ -closed convex hull of its extreme points.

Proof. The proof below is due to J. L. Kelley [96]. We establish first that
C has an extreme point. To do this, start by saying that a nonempty subset
A of C is an extremal set whenever λx + (1−λ)y ∈ A, 0 < λ < 1, and
x, y ∈ C imply x, y ∈ A. Let A be the collection of all τ -closed extremal
subsets of C, ordered by inclusion. That is,

A =
{
A ⊆ C : A is extremal and τ -closed

}
.

Since C ∈ A, we have A �= �©. Now if {Ai : i ∈ I} is an arbitrary chain
of A, then {Ai : i ∈ I} has the finite intersection property, and since C is
τ -compact, it follows that

⋂
{Ai : i ∈ I} �= �©. An easy argument shows

that
⋂
{Ai : i ∈ I} ∈ A. That is, every chain of A has a lower bound in A.

Consequently, by Zorn’s lemma, A has a minimal element, say M . Assume
that a, b ∈ M and a �= b. Then by Theorem 3.7 there exists some x′ ∈ X ′

with x′(a) �= x′(b). Put m = min
{
x′(x) : x ∈ M

}
and consider the set

B =
{
x ∈ M : x′(x) = m

}
. Clearly, B is a nonempty proper subset of

M which is τ -closed and convex. On the other hand, it is easy to see that
B is an extremal subset of C, contradicting the minimality property of M .
Hence, M consists of one point, which must be an extreme point of C.

Now let E denote the (nonempty) set of all extreme points of C. Assume
that there exists some a ∈ C with a /∈ co (E). By Theorem 3.12 there exists
some x′ ∈ X ′ such that for some c ∈ R and some ε > 0 we have x′(a) < c
and x′(x) ≥ c + ε for all x ∈ co (E). Put s = min

{
x′(x) : x ∈ C

}
, and

then define the nonempty τ -closed convex set K =
{
x ∈ C : x′(x) = s

}
.

Clearly, K ∩ E = �© holds, and by the first part, K must have an extreme
point. However, since every extreme point of K is also an extreme point of
C (why?), this is a contradiction. Hence, C = co (E) holds, and the proof is
finished.

We leave now the separation properties and turn our attention to the
important concept of duality. A dual system 〈X, X ′〉 is a pair of vector
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spaces X and X ′ together with a bilinear form (x, x′) �→ 〈x, x′〉 (i.e., with a
function 〈·, ·〉 : X ×X ′ → R which is linear in each variable separately) such
that:

(1) If 〈x, x′〉 = 0 holds for all x ∈ X, then x′ = 0.

(2) If 〈x, x′〉 = 0 holds for all x′ ∈ X ′, then x = 0.

If (X, τ) is a locally convex space, then 〈X, X ′〉 is a dual system under
the bilinear form 〈x, x′〉 = x′(x). (To see this, use Theorem 3.7.) As we
shall see, this example is representative of the typical dual system.

Now let 〈X, X ′〉 be a dual system. Then note that for each x′ ∈ X ′ the
formula f(x) = 〈x, x′〉, x ∈ X, defines a linear functional on X. Moreover,
the mapping x′ �→ 〈·, x′〉, from X ′ to X∗, is one-to-one and linear. In
other words, identifying x′ with the linear functional 〈·, x′〉, we see that each
x′ ∈ X ′ can be viewed as a linear functional on X, and in addition the
following subspace inclusions hold:

X ′ ⊆ X∗ ⊆ R
X .

The weak topology σ(X ′, X) on X ′ is the locally convex topology induced
by the product topology of R

X on X ′. The product topology of R
X is the

locally convex topology generated by the family of seminorms {px : x ∈ X},
where px(f) = |f(x)| holds for all f ∈ R

X . Thus σ(X ′, X) is generated by
the family of seminorms {px : x ∈ X}, where px(x′) =

∣∣〈x, x′〉
∣∣ holds for all

x′ ∈ X ′. In particular, it should be noted that the collection of sets{
x′ ∈ X ′ : |〈xi, x

′〉| ≤ 1 for i = 1, . . . , n
}

form a base at zero for σ(X ′, X). Clearly, a net {x′
α} ⊆ X ′ satisfies

x′
α−→σ(X′,X) 0 if and only if 〈x, x′

α〉 → 0 holds in R for each x ∈ X; and this
justifies the alternative name the topology of pointwise convergence
on X used for σ(X ′, X).

Similarly, for each x ∈ X the formula x(x′) = 〈x, x′〉 defines a linear
functional on X ′, which we identify with x. Thus, the following vector
subspace inclusions hold:

X ⊆ (X ′)∗ ⊆ R
X′

.

The weak topology σ(X, X ′) (or the topology of pointwise conver-
gence on X ′) is the locally convex topology induces on X by the prod-
uct topology of R

X′
. Note that σ(X, X ′) is generated by the family of

seminorms {px′ : x′ ∈ X ′}, where px′(x) = |〈x, x′〉|. In particular, a net
{xα} ⊆ X satisfies xα−→σ(X,X′) 0 if and only if 〈xα, x′〉 → 0 holds in R for
each x′ ∈ X ′. Also, it should be noted that the collection of sets of the form{
x ∈ X : |〈x, x′

i〉| ≤ 1 for i = 1, . . . , n
}

is a base at zero for the topology
σ(X, X ′).
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The next result characterizes the linear functionals that belong to the
vector space generated by a finite collection of linear functionals.

Lemma 3.15. Let f, f1, . . . , fn be linear functionals on a vector space X.
Then f is a linear combination of f1, . . . , fn (i.e., there exist real numbers
λ1, . . . , λn such that f = λ1f1+· · ·+λnfn) if and only if

⋂n
i=1 Ker fi ⊆ Ker f .

Proof. Clearly, if f =
∑n

i=1 λifi, then
⋂n

i=1 Ker fi ⊆ Ker f holds. For the
converse assume

⋂n
i=1 Ker fi ⊆ Ker f .

Define the operator T : X → R
n by T (x) =

(
f1(x), . . . , fn(x)

)
for each

x ∈ X. Note that if T (x) = T (z), then fi(x− z) = 0 holds for all 1 ≤ i ≤ n,
and from our hypothesis it follows that f(x) = f(z). This means that the
formula φ(Tx) = f(x), x ∈ X, defines a linear functional on the vector
subspace T (X) of R

n, and hence φ can be extended linearly to all of R
n.

Thus, there exist real numbers λ1, . . . , λn such that

φ(y1, . . . , yn) = λ1y1 + · · · + λnyn

holds for all (y1, . . . , yn) ∈ R
n. In particular, we have

f(x) = φ(Tx) =
n∑

i=1

λifi(x)

for all x ∈ X, as desired.

The topological dual of
(
X, σ(X, X ′)

)
is precisely X ′. The details follow.

Theorem 3.16. Let 〈X, X ′〉 be a dual system. Then the topological dual
of X with σ(X, X ′) is precisely X ′. That is, a linear functional f on X is
σ(X, X ′)-continuous if and only if there exists a (unique) x′ ∈ X ′ satisfying

f(x) = 〈x, x′〉
for all x ∈ X. Similarly, we have

(
X ′, σ(X ′, X)

)′ = X.

Proof. Let f ∈ X∗. If some x′ ∈ X ′ satisfies f(x) = 〈x, x′〉 for all x ∈ X,
then f is clearly a σ(X, X ′)-continuous linear functional.

For the converse assume that f is a σ(X, X ′)-continuous linear func-
tional. By Theorem 3.5 there exist x′

1, . . . , x
′
n ∈ X ′ such that f is bounded

on the σ(X, X ′)-neighborhood of zero
{
x ∈ X : |x′

i(x)| ≤ 1 for 1 ≤ i ≤ n
}
.

Now an easy argument shows that Ker x′
1 ∩ · · · ∩ Ker x′

n ⊆ Ker f holds.
Thus, by Lemma 3.15, f must be a linear combination of x′

1, . . . , x
′
n, and so

f ∈ X ′.

If (X, τ) is a Hausdorff locally convex space, then (by Theorem 3.7) the
topological dual X ′ of (X, τ) separates the points of X, and so 〈X, X ′〉 is a
dual system under the duality 〈x, x′〉 = x′(x). Theorem 3.16 simply tells us
that these are the only type of dual systems.
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Fix a dual system 〈X, X ′〉. If A is a subset of X, then its polar Ao is
defined by

Ao :=
{
x′ ∈ X ′ : |〈x, x′〉| ≤ 1 for all x ∈ A

}
.

Clearly, Ao is a convex, circled, and σ(X ′, X)-closed subset of X ′. Similarly,
if B is a subset of X ′, then its polar is defined by

Bo :=
{
x ∈ X : |〈x, x′〉| ≤ 1 for all x′ ∈ B

}
.

Obviously, Bo is a convex, circled, and σ(X, X ′)-closed subset of X. If A is
a subset of X (or X ′), then the set Aoo := (Ao)o is called the bipolar of A.
The following are two elementary properties of polars.

(a) If A ⊆ B, then Bo ⊆ Ao.

(b) For any set A we have A ⊆ Aoo.

The next result, known as the bipolar theorem, is quite important.

Theorem 3.17 (The Bipolar Theorem). Let 〈X, X ′〉 be a dual system, and
let A be a nonempty subset of X. Then the bipolar Aoo is the convex,
circled, σ(X, X ′)-closed hull of A, i.e., Aoo is the smallest convex, circled,
and σ(X, X ′)-closed set that includes A.

Similarly, if A is an arbitrary subset of X ′, then Aoo is the convex,
circled, σ(X ′, X)-closed hull of A.

Proof. Let C be the convex, circled, σ(X, X ′)-closed hull of A. Clearly,
A ⊆ C ⊆ Aoo holds. Assume by way of contradiction that Aoo �= C. Thus,
there exists some a ∈ Aoo with a /∈ C. Now applying Theorem 3.12 to the
pair of convex sets (C, {a}) and taking into account Theorem 3.16, we see
that there exist x′ ∈ X ′ and c ∈ R satisfying 〈x, x′〉 ≤ c for all x ∈ C and
〈a, x′〉 > c. In view of 0 ∈ C, we can assume that c = 1. Now since C
is circled, it follows that |〈x, x′〉| ≤ 1 holds for all x ∈ C, and so x′ ∈ Ao.
In particular, since a ∈ Aoo, we have |〈a, x′〉| ≤ 1, contrary to 〈a, x′〉 > 1.
Hence, C = Aoo holds, and the proof is finished.

More properties of polars are included in the next result.

Theorem 3.18. Let 〈X, X ′〉 be a dual system, and let {Ai : i ∈ I} be a
family of (nonempty) subsets of X. Then we have:

(1)
(⋃

i∈I Ai

)o =
⋂

i∈I Ao
i .

(2) If each Ai is convex, circled, and σ(X, X ′)-closed, then the set(⋂
i∈I Ai

)o is the convex, circled, σ(X ′, X)-closed hull of
⋃

i∈I Ao
i .

Similar statements hold true if {Ai : i ∈ I
}

is a family of subsets of X ′.
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Proof. (1) Straightforward.

(2) By the bipolar theorem we have Aoo
i = Ai for each i, and so by (1)(⋃

i∈I

Ao
i

)oo
=
[(⋃

i∈I

Ao
i

)o]o
=
[⋂
i∈I

Aoo
i

]o
=
[⋂
i∈I

Ai

]o
,

which (by the bipolar theorem again) establishes our claim.

In term of polars the topological dual of a locally convex space is de-
scribed as follows.

Theorem 3.19. If (X, τ) is a locally convex space, then

X ′ =
⋃{

V o : V is a τ -neighborhood of zero
}

,

where the polars are taken in the algebraic dual X∗.

Proof. If f ∈ X ′, then V = f−1
(
[−1, 1]

)
is a τ -neighborhood of zero and

f ∈ V o holds. On the other hand, if f ∈ X∗ satisfies f ∈ V o for some τ -
neighborhood V of zero, then f is bounded on V , and so (by Theorem 3.5)
f ∈ X ′.

Let (X, τ) be a Hausdorff locally convex space. Then X always will be
considered in duality with X ′ under 〈x, x′〉 = x′(x). From the preceding
result it should be immediate that for an arbitrary τ -neighborhood of zero
its polars in X ′ and X∗ coincide. As we shall see next, the polar of a
neighborhood is always σ(X ′, X)-compact. This important result is due to
L. Alaoglu [5].

Theorem 3.20 (Alaoglu). If (X, τ) is a locally convex space and V is a
τ -neighborhood of zero, then its polar V o is a σ(X ′, X)-compact set.

Proof. Let V be a τ -neighborhood of zero. We have V o ⊆ X ′ ⊆ R
X , and

σ(X ′, X) is the product topology of R
X restricted to X ′. In particular, V o

is σ(X ′, X)-compact if and only if V o is compact in R
X , and this in turn

(by Tychonoff’s classical theorem) is the case if and only if V o is closed and
bounded in R

X .
Clearly, V o is bounded in R

X . On the other hand, if a net {x′
α} ⊆ V o

satisfies x′
α → f in R

X (i.e., if x′
α(x) → f(x) holds in R for each x ∈ X),

then f is a linear functional on X and |f(x)| ≤ 1 holds for all x ∈ V . By
Theorem 3.5, f ∈ X ′, and thus f ∈ V o, so that V o is also a closed subset of
R

X . By the above, V o is σ(X ′, X)-compact.

Let (X, τ) be a locally convex space. A subset A of X ′ is said to be a τ -
equicontinuous set, whenever for each ε > 0 there exists a τ -neighborhood
V of zero such that |x′(x)| ≤ ε holds for all x ∈ V and all x′ ∈ A. The
equicontinuous sets are characterized as follows.
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Theorem 3.21. Let (X, τ) be a locally convex space. Then a subset A of
X ′ is an equicontinuous set if and only if there exists a τ -neighborhood V of
zero such that A ⊆ V o. In particular, every equicontinuous subset of X ′ is
relatively σ(X ′, X)-compact.

Proof. Assume that A ⊆ V o holds for some τ -neighborhood V of zero.
Then for each x ∈ εV and each x′ ∈ A we have |x′(x)| ≤ ε, which shows
that A is an equicontinuous set. Conversely, if A is an equicontinuous set,
then there exists a τ -neighborhood V of zero satisfying |x′(x)| ≤ 1 for all
x ∈ V and all x′ ∈ A, and so A ⊆ V o holds. The last part follows from
Theorem 3.20.

We continue now with the introduction of the S-topologies. Let 〈X, X ′〉
be a dual system, and let S be a collection of σ(X, X ′)-bounded subsets
of X. (To keep the topologies Hausdorff, it will be tacitly assumed that⋃
{A : A ∈ S} always spans X.) Then for each A ∈ S the formula

ρA(x′) = sup
{
|〈x, x′〉| : x ∈ A

}
, x′ ∈ X ′ ,

defines a seminorm on X ′, and so S generates a locally convex topology on
X ′ via the family of seminorms {ρA : A ∈ S}. Note that the closed unit
ball of ρA is precisely the polar of A, i.e., Ao =

{
x′ ∈ X ′ : ρA(x′) ≤ 1

}
. This

topology is referred to as the S-topology. Since a net {x′
α} ⊆ X ′ satisfies

x′
α−→S 0 if and only if {x′

α} converges uniformly to zero on the sets of S,
the S-topology is also known as the topology of uniform convergence
on the sets of S. A moment’s thought reveals that the sets of the form

ε
(
Ao

1 ∩ · · · ∩ Ao
n

)
,

where A1, . . . , An ∈ S and ε > 0, form a base at zero for the S-topology.
A collection S of subsets of X is called full whenever it satisfies the

following properties:

(a) If A ∈ S, then λA ∈ S holds for all λ > 0.
(b) If A, B ∈ S, then there exists some C ∈ S with A ∪ B ⊆ C.
(c)
⋃
{A : A ∈ S} spans X.

Note that if 〈X, X ′〉 is a dual system and S is a full collection of
σ(X, X ′)-bounded subsets of X, then the polars of the sets of S form a
base at zero for the S-topology on X ′. Clearly, a completely symmetric
situation occurs when S is a collection of σ(X ′, X)-bounded subsets of X ′.

It is interesting to know that every locally convex topology on a vector
space is an appropriate S-topology.

Theorem 3.22. Let (X, τ) be a locally convex space. Then τ is the S-
topology of uniform convergence on the τ -equicontinuous subsets of X ′.
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Proof. By Theorem 3.16 the topological dual of
(
X, σ(X, X ′)

)
is also X ′,

and so (by Theorem 3.13) τ and σ(X, X ′) have the same convex closed sets.
In particular, if V is a convex, circled, τ -closed neighborhood of zero, then
(by the bipolar theorem) we have V = V oo. Therefore, if

S =
{
A ⊆ X ′ : A is τ -equicontinuous} ,

then according to Theorem 3.21 this S-topology coincides with τ .

Consider a dual system 〈X, X ′〉. Then a locally convex topology τ on X
is said to be consistent (or compatible) with the dual system whenever
the topological dual of (X, τ) is precisely X ′. The consistent topologies on
X ′ are defined analogously. In order to characterize the consistent topologies
we need a lemma.

Lemma 3.23. If A1, . . . , An are convex, circled, and compact subsets in a
topological vector space, then the convex circled hull of A1 ∪ · · · ∪ An is a
compact set.

Proof. Let A1, . . . , An be convex, circled, and compact subsets in a topo-
logical vector space (X, τ), and let B denote the convex circled hull of
A1 ∪ · · · ∪ An. Then an easy argument shows that

B =
{ n∑

i=1

λixi : xi ∈ Ai for each i = 1, . . . , n and
n∑

i=1

|λi| ≤ 1
}

.

Put K =
{
λ = (λ1, . . . , λn) ∈ R

n : |λ1| + · · · + |λn| ≤ 1
}
, and note that

K is a compact subset of R
n. Now consider each Ai and B with the topol-

ogy τ , and note that the function f : K × A1 × · · · × An → B, defined by
f(λ, x1, . . . , xn) = λ1x1 + · · · + λnxn, is continuous and onto. In particular,
this implies that B is a compact set, as desired.

G. W. Mackey [133] and R. Arens [27] characterized the consistent
topologies as follows.

Theorem 3.24 (Mackey–Arens). Let 〈X, X ′〉 be a dual system. Then a
locally convex topology τ on X is consistent with the dual system if and only
if τ is a S-topology for some collection S of convex, circled, and σ(X ′, X)-
compact sets that cover X ′.

Proof. Let τ be a locally convex topology on X consistent with the dual
system 〈X, X ′〉. By Theorem 3.22 the topology τ is the S-topology for
the collection S =

{
V o : V is a τ -neighborhood of zero

}
. Clearly, each V o

is convex, circled, and (by Theorem 3.20) σ(X ′, X)-compact. Moreover,⋃{
V o : V o ∈ S

}
= X ′.

For the converse assume that S is a collection of convex, circled, and
σ(X ′, X)-compact subsets of X ′ with

⋃
{A : A ∈ S} = X ′. Denote by Y
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the topological dual of X with the S-topology, i.e., Y = (X, S)′, and note
that X ′ ⊆ Y holds. Now consider the dual system 〈X, X∗〉, and let

B =
{
V ⊆ X : ∃ ε > 0 and A1, . . . , An ∈ S with V = ε

(
Ao

1 ∩ · · · ∩ Ao
n

)}
.

Since B is a base at zero for the S-topology, it follows from Theorem 3.19
that Y =

⋃{
V o : V ∈ B

}
, where the polars are taken in X∗. Now let

A1, . . . , An ∈ S. If C denotes the convex circled hull of A1 ∪ · · · ∪An in X ′,
then by Lemma 3.23 the set C is σ(X ′, X)-compact and hence σ(X∗, X)-
compact. Therefore, by the bipolar theorem we have

(A1 ∪ · · · ∪ An)oo = (Ao
1 ∩ · · · ∩ Ao

n)o = C ,

where the polars are taken with respect to the dual system 〈X, X∗〉. This
implies that V o ⊆ X ′ holds for all V ∈ B, and so Y ⊆ X ′ also holds.
Consequently, Y = X ′, and the proof is finished.

An immediate consequence of Theorem 3.24 is that in a dual system
〈X, X ′〉 there always exists a largest consistent locally convex topology on
X, namely, the S-topology, where S is the collection of all convex, circled
and σ(X ′, X)-compact subsets of X ′. This largest topology is denoted by
τ(X, X ′) and is called the Mackey topology of X. The Mackey topology
τ(X ′, X) on X ′ is defined in a similar manner. Taking into account Theo-
rem 3.24 once more, it is easy to see that a locally convex topology τ on X
is consistent with respect to the dual system 〈X, X ′〉 if and only if

σ(X, X ′) ⊆ τ ⊆ τ(X, X ′) .

Similarly, a locally convex topology τ on X ′ is consistent with 〈X, X ′〉 if and
only if σ(X ′, X) ⊆ τ ⊆ τ(X ′, X).

It is surprising to learn that all consistent topologies have the same
bounded sets. This important result is due to G. W. Mackey [133].

Theorem 3.25 (Mackey). Let 〈X, X ′〉 be a dual system. Then all consistent
locally convex topologies on X have the same bounded subsets of X.

Proof. It is enough to establish that every σ(X, X ′)-bounded subset of X
is τ(X, X ′)-bounded. To this end, let A be a σ(X, X ′)-bounded subset of
X, and let B be a convex, circled, and σ(X ′, X)-compact subset of X ′.
To complete the proof we have to demonstrate the existence of some λ > 0
satisfying λA ⊆ Bo. The existence of such λ will be based upon the following
claim:

There exists some x′ ∈ B, some k ∈ N, and some σ(X ′, X)-neighborhood
V of zero such that

B ∩ (x′ + V ) ⊆ kAo . (�)
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To see this, assume by way of contradiction that the above claim is
false. Then there exists a sequence {x′

n} ⊆ B and a sequence {Vn} of open
σ(X ′, X)-neighborhoods of zero satisfying

x′
n+1 + V n+1 ⊆ (x′

n + Vn) ∩
[
X ′ \ (n + 1)Ao

]
for all n. The existence of the two sequences can be demonstrated by induc-
tion as follows. Start with n = 0 by choosing an arbitrary x′

0 ∈ B and an
arbitrary open σ(X ′, X)-neighborhood V0 of zero. If x′

n ∈ B and Vn have
been chosen, then from B∩(x′

n+Vn) �⊆ (n+1)Ao, it follows that there exists
some x′

n+1 ∈ B∩(x′
n+Vn)∩

[
X ′\(n+1)Ao

]
. Since (x′

n+Vn)∩
[
X ′\(n+1)Ao

]
is a σ(X ′, X)-open set, there exists an open σ(X ′, X)-neighborhood Vn+1 of
zero with x′

n+1 +V n+1 ⊆ (x′
n +Vn)∩

[
X ′ \ (n+1)Ao

]
, where the bar denotes

σ(X ′, X)-closure, and the induction is complete.
Next note that {B ∩ (x′

n + V n)} is a decreasing sequence of σ(X ′, X)-
closed nonempty subsets of B, and so by the σ(X ′, X)-compactness of B we
must have

⋂∞
n=1 B ∩ (x′

n + V n) �= �©. However, if x′ ∈
⋂∞

n=1 B ∩ (x′
n + V n),

then x′ /∈ nAo for all n, contradicting the fact that Ao is absorbing. Thus,
(�) holds.

Now write(�) in the form (B − x′) ∩ V ⊆ kAo − x′, and then pick some
0 < ε < 1 with ε(B − x′) ⊆ V . Since zero belongs to the convex set B − x′,
we also have ε(B−x′) ⊆ B−x′, and so ε(B−x′) ⊆ (B−x′)∩V ⊆ kAo−x′.
Therefore, εB ⊆ kAo + (ε − 1)x′. Since Ao is absorbing, there exists some
m ∈ N with (ε − 1)x′ ∈ mAo, and so by the convexity of Ao we get

εB ⊆ kAo + (ε − 1)x′ ⊆ kAo + mAo = (k + m)Ao .

Thus, λB ⊆ Ao holds for some λ > 0. Taking polars we obtain

A ⊆ Aoo ⊆ (λB)o = 1
λBo ,

so that λA ⊆ Bo holds, as required.

When X is a Banach space its norm topology coincides with the Mackey
topology τ(X, X ′). Thus, for a Banach space X, Theorem 3.25 simply states
that a subset of X is norm bounded if and only if it is weakly bounded. This
property is known as the principle of uniform boundedness.

Recall that the adjoint (or transpose) of an operator T : X → Y
between two vector spaces is the operator T ∗ : Y ∗ → X∗ defined via the
duality identity 〈

x, T ∗y∗
〉

=
〈
Tx, y∗

〉
, x ∈ X , y∗ ∈ Y ∗ .

If 〈X, X ′〉 and 〈Y, Y ′〉 is a pair of dual systems, then an operator T : X → Y
is said to be weakly continuous whenever T :

(
X, σ(X, X ′)

)
→
(
Y, σ(Y, Y ′)

)
is continuous. For this to happen it is necessary and sufficient for the alge-
braic adjoint T ∗ to carry Y ′ onto a vector subspace of X ′.
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Theorem 3.26. Let 〈X, X ′〉 and 〈Y, Y ′〉 be a pair of dual systems, and let
T : X → Y be an operator. Then T is weakly continuous if and only if

T ∗(Y ′) ⊆ X ′ .

Proof. Assume first that T is weakly continuous, and let y′ ∈ Y ′. From
T ∗y′(x) = y′(Tx), x ∈ X, it is easy to see that T ∗y′ is σ(X, X ′)-continuous,
and so (by Theorem 3.16) we have T ∗y′ ∈ X ′. Hence, T ∗(Y ′) ⊆ X ′.

For the converse, suppose that T ∗(Y ′) ⊆ X ′. Let y′1, . . . , y
′
n ∈ Y ′, and

consider the σ(Y, Y ′)-neighborhood of zero

V =
{
y ∈ Y : |〈y, y′i〉| ≤ 1 for i = 1, . . . , n} .

Since T ∗y′1, . . . , T
∗y′n ∈ X ′, the set

W =
{
x ∈ X : |〈x, T ∗y′i〉| ≤ 1 for i = 1, . . . , n

}
is a σ(X, X ′)-neighborhood of zero. From 〈Tx, y′i〉 = 〈x, T ∗y′i〉, it follows
that T (W ) ⊆ V . This shows that T is weakly continuous.

Consider a pair of dual systems 〈X, X ′〉 and 〈Y, Y ′〉, and let T : X → Y
be a weakly continuous operator. By the preceding theorem we know that
T ∗ carries Y ′ into X ′. In this case, the adjoint operator T ∗ restricted to
Y ′ will be denoted by T ′. Thus, if T : X → Y is weakly continuous, then
T ′ : Y ′ → X ′ satisfies the duality identity〈

x, T ′y′
〉

=
〈
Tx, y′

〉
, x ∈ X , y′ ∈ Y ′ .

In connection with weakly continuous operators, the following remark-
able theorem of A. Grothendieck [73] describes an important duality prop-
erty of totally bounded sets.

Theorem 3.27 (Grothendieck). Let 〈X, X ′〉 and 〈Y, Y ′〉 be a pair of dual
systems. Let S be a full collection of σ(X, X ′)-bounded subsets of X, and
let S′ be another full collection of σ(Y ′, Y )-bounded subsets of Y ′. Then
for a weakly continuous operator T : X → Y the following statements are
equivalent:

(1) T (A) is S′-totally bounded for each A ∈ S.

(2) T ′(B) is S-totally bounded for each B ∈ S′.

Proof. By the symmetry of the situation it is enough to show that (1)
implies (2). Therefore, assume that (1) is true.

Fix B ∈ S′ and let A ∈ S. By hypothesis T (A) is S′-totally bounded.
Therefore, there exists a finite subset Φ = {y1, . . . , yn} ⊆ Y such that

T (A) ⊆ Φ + 1
3Bo . (�)
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Since B is σ(Y ′, Y )-bounded, the set
{(

〈y1, y
′〉, . . . , 〈yn, y′〉

)
: y′ ∈ B

}
is a

bounded subset of R
n and hence is totally bounded. Pick a finite subset C of

B such that for each y′ ∈ B there exists some c′ ∈ C with
∣∣〈yi, y

′− c′〉
∣∣ ≤ 1

3
for each i = 1, . . . , n.

Now let b′ ∈ B. Fix c′ ∈ C so that
∣∣〈yi, b

′− c′〉
∣∣ ≤ 1

3 holds for all
i = 1, . . . , n. If x ∈ A, then by (�) there exists some 1 ≤ j ≤ n with
T (x) − yj ∈ 1

3Bo, and so
∣∣〈x, T ′(b′− c′

〉∣∣ =
∣∣〈Tx, b′− c′

〉∣∣
=
∣∣〈T (x)− yj , b

′〉∣∣+ ∣∣〈T (x)− yj , c
′〉∣∣+ ∣∣〈yj , b

′− c′
〉∣∣

≤ 1
3 + 1

3 + 1
3 = 1 .

This implies T ′(b′)−T ′(c′) ∈ Ao, and so T ′(B) ⊆ T ′(C) + Ao holds. Since{
Ao : A ∈ S

}
is a base at zero for the S-topology, the latter shows that

T ′(B) is an S-totally bounded set, and the proof is finished.

We continue with the introduction of the strong topologies. Consider
a dual system 〈X, X ′〉. Then the strong topology β(X ′, X) on X ′ is the
S-topology when S is the collection of all σ(X, X ′)-bounded subsets of X.
Similarly, the strong topology β(X, X ′) on X is the S-topology when S is
the collection of all σ(X ′, X)-bounded subsets of X ′.

If (X, τ) is a locally convex space, then its second dual X ′′ is the
topological dual of

(
X ′, β(X ′, X)

)
. The elements of X ′′ will be denoted by

double primes, for instance, x′′, y′′, etc. If no specific topology on X ′′ is
considered, then X ′′ will always be assumed to be equipped with β(X ′′, X ′).
There is a natural embedding x �→ x̂ from X into X ′′, defined by

x̂(x′) = x′(x) for all x′ ∈ X ′ and all x ∈ X .

Clearly, x �→ x̂ is linear and (by Theorem 3.7) it is also one-to-one. Identi-
fying each x with its image x̂, we can consider X as a vector subspace of X ′.
In conjunction with this identification, it should be noted that the locally
convex topology σ(X ′′, X ′) induces σ(X, X ′) on X.

For a Banach space X, the strong topology β(X, X ′) is the norm topol-
ogy of X, and likewise β(X ′, X) is the norm topology of X ′. Also, it should
be noted that the natural embedding x �→ x̂ is, in this case, an isometry.

Exercises

1. Prove that a convex set A is circled if and only if x ∈ A implies −x ∈ A.

2. For a finite collection A1, . . . , An of subsets of a vector space establish the
following:
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(a) If each Ai is convex, then

co
( n⋃

i=1

Ai

)
=
{ n∑

i=1

λixi : λi ≥ 0, xi ∈ Ai, and
n∑

i=1

λi = 1
}

.

(b) If each Ai is convex and circled, then the convex circled hull of⋃n
i=1 Ai is precisely the set

{ n∑
i=1

λixi : xi ∈ Ai and
n∑

i=1

|λi| ≤ 1
}

.

3. Show that a subset A of a topological vector space (X, τ) is τ -bounded
if and only if for each sequence {xn} ⊆ A and each sequence {λn} ⊆ R

with λn → 0 we have λnxn−→τ 0.

4. Give an example of two disjoint closed convex sets in a locally convex
space that cannot be strictly separated.

5. Let τ be the locally convex topology on a vector space X generated by a
family of seminorms {pi : i ∈ I}. Show that:
(a) A subset A of X is τ -bounded if and only if pi(A) is a bounded

subset of R for each i ∈ I.
(b) A net {xα} of X satisfies xα−→τ 0 if and only if pi(xα) → 0 holds

in R for each i ∈ I.

6. Let (X, τ) be a locally convex space. If p is a τ -continuous seminorm
on X, then show that for each a ∈ X there exists a τ -continuous linear
functional x′ on X satisfying:
(a)
∣∣x′(x)

∣∣ ≤ p(x) for all x ∈ X, and
(b) x′(a) = p(a).

7. If X is a Banach space, then show that:
(a) The Mackey topology τ(X,X ′) coincides with the norm topology

of X.
(b) The strong topology β(X ′,X) coincides with the norm topology

of X ′.

8. Let 〈X,X ′〉 be a dual system and let S be a collection of σ(X ′,X)-
bounded subsets of X ′. Then show that the S-topology on X does not
change if we replace S by any one of the following collections of subsets
of X ′:
(a) The finite unions of the sets of S.
(b) The subsets of the sets of S.
(c) The sets of the form λA, λ ∈ R and A ∈ S.
(d) The σ(X ′,X)-closures of the sets in S.
(e) The circled hulls of the sets in S.
(f) The convex, circled, σ(X ′,X)-closed hulls of the sets of S.
(g) The sets of the form λA, where λ ∈ R and A is a subset of the convex

circled σ(X ′,X)-closed hull of some finite union of sets in S.

9. Show that a sequence {xn} in a locally convex space (X, τ) satisfies
xn−→τ 0 if and only if x′

n(xn) → 0 holds in R for each τ -equicontinuous
sequence {x′

n} of X ′.
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10. For a locally convex space (X, τ) establish the following statements.
(a) The topology σ(X ′′,X ′) induces σ(X,X ′) on X.
(b) X is σ(X ′′,X ′)-dense in X ′′.
(c) A subset B of X is σ(X,X ′)-compact if and only if B is bounded

and σ(X,X ′)-complete.

11. Let 〈X,X ′〉 and 〈Y, Y ′〉 be a pair of dual systems. Then for an operator
T : X → Y show that the following statements are equivalent.
(a) T :

(
X,σ(X,X ′)

)
→
(
Y, σ(Y, Y ′)

)
is continuous.

(b) T :
(
X, τ(X,X ′)

)
→
(
Y, τ(Y, Y ′)

)
is continuous.

12. This exercise discusses quotient topological vector spaces. Let Y be a
vector subspace of topological vector spaces (X, τ), and let Q : X → X/Y
denote the canonical projection of X onto X/Y .
(a) Show that

{
Q(V ) : V is a τ -neighborhood of zero

}
is a base at zero

for a linear topology τQ on X/Y (called the quotient topology on
X/Y ).

(b) Show that Q : (X, τ) → (X/Y, τQ) is an open mapping.
(c) Show that τQ is a Hausdorff topology if and only if Y is a τ -closed

vector subspace.
(d) If τ is locally convex, then show that τQ is likewise locally convex.
(e) What is the topological dual of (X/Y, τQ)?

3.2. Weak Topologies on Banach Spaces

A vector space equipped with a norm is called a normed vector space or
simply a normed space. If a normed space is complete with respect to
the metric generated by its norm, then it is called a Banach space. The
normed spaces are special examples of topological vector spaces. In this
section we shall review (with proofs) the most important properties of the
weak topologies on normed spaces.

Theorem 3.28. On a finite dimensional vector space, the Euclidean topol-
ogy is the only Hausdorff linear topology that the space admits. In particular,
on a finite dimensional vector space any two norms are equivalent.

Proof. We can assume that the finite dimensional vector space is R
n. Let

‖ · ‖ denote the Euclidean norm on R
n, i.e., ‖x‖ =

(
x2

1 + · · ·+ x2
n

) 1
2 , and let

τ be a linear Hausdorff topology on R
n. We must show that the identity

operator I :
(
R

n, ‖ · ‖
)
→
(
R

n, τ
)

is a homeomorphism.
Since convergence with respect to the Euclidean norm is equivalent to

pointwise convergence, we see that I :
(
R

n, ‖ · ‖
)
→
(
R

n, τ
)

is a continuous
operator. Consequently, to complete the proof, it is enough to establish that
B =
{
x ∈ R

n : ‖x‖ < 1
}

is a τ -neighborhood of zero.
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To this end, let S =
{
x ∈ R

n : ‖x‖ = 1
}
. Since S is closed and

bounded, it is a norm compact subset of R
n, and so by the continuity of

I :
(
R

n, ‖ · ‖
)
→
(
R

n, τ
)

the set S is also τ -compact. In particular, S is
τ -closed. Since 0 /∈ S, there exists a circled τ -neighborhood V of zero with
V ∩ S = �©. We claim that V ⊆ B holds. Indeed, if some x ∈ V satisfies
‖x‖ ≥ 1, then we have x

‖x‖ ∈ V ∩ S, which is impossible. Thus, V ⊆ B

holds, proving that B is a τ -neighborhood of zero, as required.

An immediate consequence of the preceding result is the following.

Corollary 3.29. Every finite dimensional vector subspace of a Hausdorff
topological vector space is closed.

Now some notation is in order. Let X be a normed vector space. Then
the norm dual of X will be denoted (as usual) by X ′ and its second norm
dual by X ′′. Recall that X ′ is a Banach space under the norm

‖x′‖ := sup
{
|x′(x)| : ‖x‖ = 1

}
.

The closed unit balls of X, X ′, and X ′′ will be denoted by U , U ′, and U ′′,
respectively. That is,

U :=
{
x ∈ X : ‖x‖ ≤ 1

}
,

U ′ :=
{
x′ ∈ X ′ : ‖x′‖ ≤ 1

}
,

U ′′ :=
{
x′′ ∈ X ′′ : ‖x′′‖ ≤ 1

}
.

With the vector space X we associate the pair of dual systems 〈X, X ′〉 and
〈X ′, X ′′〉, whose dualities are given by the bilinear forms

〈x, x′〉 = x′(x) and 〈x′, x′′〉 = x′′(x′) .

The closed unit balls U and U ′ are in duality with respect to 〈X, X ′〉, that
is, Uo = U ′ and (U ′)o = U hold. Similarly, U ′ and U ′′ are in duality with
respect to the dual system 〈X ′, X ′′〉. Note that (by Alaoglu’s Theorem 3.20)
U ′ is σ(X ′, X)-compact and U ′′ is σ(X ′′, X ′)-compact.

Definition 3.30. Let X be a normed vector space. The weak topology
σ(X, X ′) on X will be denoted by w, i.e., w := σ(X, X ′). Similarly, the
topology σ(X ′, X) on X ′ is called the weak∗ topology and will be denoted
by w∗, i.e, w∗ := σ(X ′, X).

Consequently, in a normed space X the symbol xα−→w x means that
x′(xα) → x′(x) holds in R for each x′ ∈ X ′. Similarly, x′

α−→w
∗

x′ means
that x′

α(x) → x′(x) holds in R for each x ∈ X. Also, note that x′
α−→w x′ in

X ′ means that x′′(x′
α) → x′′(x′) for each x′′ ∈ X ′′.

The next result is a Banach space version of Theorem 3.6 and is often
quite useful.



158 3. Topological Considerations

Lemma 3.31. Let X be a normed space. If f is a continuous linear func-
tional on a vector subspace of X, then f has a continuous extension to all
of X that preserves its original norm.

In particular, for each x ∈ X there exists a continuous linear functional
x′ on X such that ‖x′‖ = 1 and x′(x) = ‖x‖.

Proof. Let Y be a vector subspace of a normed space X, and let f : Y → R

be a continuous linear functional. Denote by α the norm of f , i.e.,

α = sup
{
|f(y)| : y ∈ Y and ‖y|| = 1

}
.

Then the mapping p : X → R, defined by p(x) = α‖x‖ for each x ∈ X, is
a sublinear mapping satisfying f(y) ≤ p(y) for all y ∈ Y . By the Hahn–
Banach Theorem 1.25 there exists an extension of f to all of X (which
we denote by f again) satisfying f(x) ≤ p(x) for all x ∈ X. This implies
|f(x)| ≤ α‖x‖ for all x ∈ X, which shows that f is continuous, and moreover
we have ‖f‖ = α.

To see the last claim, let x ∈ X and put Y = {λx : λ ∈ R}. Now
consider the continuous linear functional x′ : Y → R, where x′(λx) = λ‖x‖.
Observe that (when x �= 0) we have ‖x′‖ = 1, and then apply the preceding
conclusion.

Every vector x ∈ X gives rise to a continuous linear functional x̂ on X ′

via the formula x̂(x′) = x′(x) for all x′ ∈ X ′. An easy application of the
preceding lemma shows that the natural embedding x �→ x̂, of a normed
vector space X into its second dual X ′′, is a linear isometry. Thus, X can
be considered as a vector subspace of X ′′. In case X is a Banach space and
x �→ x̂ is onto (i.e., for each x′′ ∈ X ′′ there exists some x ∈ X satisfying
x′′(x′) = x′(x) for all x′ ∈ X ′), then X is referred to as a reflexive Banach
space.

Now let X be normed space. Consider the dual system 〈X ′, X ′′〉, and
view X as a vector subspace of X ′′. Note that U is a convex circled subset of
X ′′, and so the σ(X ′′, X ′)-closure of U in X ′′ must be its convex circled and
σ(X ′′, X ′)-closed hull. On the other hand, the identity U ′′ = (U ′)o = Uoo,
coupled with the bipolar (Theorem 3.17), shows that U ′′ is also the convex,
circled and σ(X ′′, X ′)-closed hull of U in X ′′. Thus, the following important
density theorem of H. H. Goldstein [71] is true.

Theorem 3.32 (Goldstein). If X is a normed space, then the closed unit
ball U of X is σ(X ′′, X ′)-dense in U ′′ (and hence X is also σ(X ′′, X ′)-dense
in X ′′). In particular, a Banach space X is reflexive if and only if its closed
unit ball is weakly compact.
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The next three results deal with metrizability properties of the weak
topologies. We first show that the weak topology is seldom metrizable.

Theorem 3.33. For a Banach space X the following statements are equiv-
alent.

(1) The vector space X is finite dimensional.

(2) The weak topology is metrizable.

(3) The weak∗ topology is metrizable.

Proof. (1) =⇒ (2) If X is finite dimensional, then the weak topology w of
X coincides with the Euclidean topology (Theorem 3.28), and hence w is
metrizable.

(2) =⇒ (1) Let {x′
1, x

′
2, . . .} be a countable subset of X ′ such that the

w-neighborhoods Vn =
{
x ∈ X : |x′

i(x)| ≤ 1 for i = 1, . . . , n
}

(n ∈ N)
form a base at zero for w. Let Yn denote the vector subspace generated by
{x′

1, . . . , x
′
n} in X ′.

Now if x′ ∈ X ′, then the set W =
{
x ∈ X : |x′(x)| ≤ 1

}
is a w-

neighborhood of zero, and so Vn ⊆ W must hold for some n. In particular,
it follows that Kerx′

1∩· · ·∩Ker x′
n ⊆ Kerx′, and so (by Lemma 3.15) x′ ∈ Yn.

Therefore, X ′ =
⋃∞

n=1 Yn. Since by Corollary 3.29 each Yn is a closed set, it
follows from Baire’s category theorem that some Yn must have an interior
point, and consequently X ′ = Yn must be true for some n. That is, X ′ is
finite dimensional. Since X is a vector subspace of X ′′, we see that X is also
finite dimensional.

(1) ⇐⇒ (3) Repeat the above arguments in a dual fashion.

In the sequel we shall make use of the following result:

• Let K and Ω be two topological spaces with K compact and Ω Hau-
sdorff. If a map f : K → Ω is onto, one-to-one, and continuous,
then f is a homeomorphism.

To see this, let C be a closed subset of K. Then C is a compact subset of
K, and so f(C) is a compact (and hence a closed) subset of Ω. Now the
identity (f−1)−1(C) = f(C) implies that f−1 is also continuous.

The metrizability of the weak∗ topology on the norm bounded subsets
of X ′ is equivalent to the separability of X. (Recall that a topological space
is said to be separable whenever there exists an at most countable subset
that is dense.)

Theorem 3.34. A normed space X is separable if and only if the closed
unit ball of X ′ is weak∗ metrizable.
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Proof. Assume that X is separable. Fix a countable dense subset
{x1, x2, . . .} of X, and define

d(x′, y′) =
∞∑

n=1

2−n |(x′ − y′)(xn)|
1+|(x′ − y′)(xn)|

for each x′, y′ ∈ X ′. A straightforward verification shows that d is a metric
on X ′, and we claim that the topology generated by d agrees with w∗ on
U ′. To see this, it is enough to show that (in view of the w∗-compactness of
U ′) that the identity mapping I : (U ′, w∗) → (U ′, d) is continuous. Indeed,
if x′

α−→w
∗

x′ holds in U ′, then the inequality

d
(
x′

α, x′) ≤
k∑

n=1

2−n |(x′
α −x′)(xn)|

1+|(x′
α −x′)(xn)| + 1

2k ,

implies lim sup d
(
x′

α, x′) ≤ 2−k for each k, and so lim d
(
x′

α, x′) = 0.
For the converse, assume that w∗ induces a metrizable topology on U ′.

Choose a sequence {xn} of X such that the w∗-neighborhoods of zero

Vn =
{
x′ ∈ X ′ : |x′(xi)| ≤ 1 for all i = 1, . . . , n

}
satisfy

⋂∞
n=1 Vn ∩ U ′ = {0}. Let Y be the norm closed vector subspace

generated in X by {xn}. Clearly, Y is separable, and we claim that Y = X.
Indeed, if there exists some x /∈ Y , then by Theorem 3.7 there exists some
x′ ∈ U ′ such that x′(y) = 0 for all y ∈ Y and x′(x) �= 0. In particular, we
have x′ ∈ Vn ∩ U ′ for all n, a contradiction, and the proof is finished.

The dual of the preceding result is also true. That is, the metrizability
of the weak topology on the norm bounded subsets of X is equivalent to the
separability of X ′.

Theorem 3.35. The norm dual X ′ of a normed vector space X is separable
if and only if the closed unit ball of X is weakly metrizable.

Proof. Assume first that X ′ is separable. Then by Theorem 3.34 the topol-
ogy σ(X ′′, X ′) is metrizable on U ′′. Since w is the restriction of σ(X ′′, X ′)
on U , it follows that w is metrizable on U .

For the converse, assume that w is metrizable on U . Choose a sequence
{x′

n} of X ′ such that the sequence of sets {Vn}, where

Vn =
{
x ∈ U : |x′

i(x)| ≤ 1 for each i = 1, . . . , n
}

,

is a w-base at zero on U . Let Y be the norm closed vector subspace generated
by {x′

n} in X ′. We claim that Y = X ′. Indeed, if this is not the case, then
by Theorem 3.7 there exists some x′′ ∈ U ′′ with x′′ = 0 on Y and x′′ �= 0.
By Theorem 3.32 there exists a net {xα} ⊆ U such that xα−→σ(X′′,X′) x′′.
Now, since for each fixed n we have x′

n(xα) = xα(x′
n) → x′′(x′

n) = 0, it is
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easy to see that xα−→w 0 holds in X and so xα−→σ(X′′,X′) 0. Thus, x′′ = 0,
which is a contradiction. Hence, Y = X ′ holds, and so X ′ is separable.

We have seen so far that the weak topology on an infinite dimensional
Banach space is not metrizable. Thus, in order to describe various topo-
logical properties involving the weak topology, one needs to employ nets.
For instance, a set is weakly compact if and only if every net of the set
has a weakly convergent subnet to some point of the set. Therefore, it is
remarkable and surprising to learn that a set is weakly compact if and only
if every sequence of the set has a weakly convergent subsequence to some
vector of the set. This important (and extremely useful) result is known
as the Eberlein–Šmulian theorem, and its proof is the subject of our next
discussion.

Lemma 3.36. If Y is a vector subspace of a normed space X, then σ(Y, Y ′)
and σ(X, X ′) induce the same topology on every subset of Y .

Proof. Every y′ ∈ Y ′ defines a seminorm on Y by letting p(y) = |y′(y)| for
all y ∈ Y . The collection of all such seminorms generates σ(Y, Y ′). Similarly,
σ(X, X ′) is generated by the seminorms of the form p(x) = |x′(x)| for each
x ∈ X (x′ ∈ X ′). By Lemma 3.31 we know that Y ′ consists precisely of
the restrictions of the members of X ′ to Y . In particular, this implies that
the seminorms generating σ(Y, Y ′) and the seminorms generating σ(X, X ′)
agree on Y , and so they induce the same topology on every subset of Y .

The following simple property of separable normed spaces will be needed.

Lemma 3.37. If X is a separable normed space, then X ′ admits a countable
set that separates the points of X.

Proof. Pick a countable dense set {x1, x2, . . .} of X, and then use Lemma 3.31
to select a sequence {x′

n} of X ′ satisfying ‖x′
n‖ = 1 and x′

n(xn) = ‖xn‖ for
each n. Now if x′

n(x) = 0 holds for each n, then the inequalities

‖x‖ ≤ ‖x − xn‖ + ‖xn‖ = ‖x − xn‖ + x′
n(xn −x) ≤ 2‖x−xn‖

easily imply x = 0, so that {x′
n} separates the points of X.

In a separable normed space, the weak topology induces a metrizable
topology on the weakly compact sets.

Theorem 3.38. Let X be a normed space. If X ′ admits a countable set that
separates the points of X (in particular, if X is separable), then the weak
topology on every weakly compact subset of X is metrizable.



162 3. Topological Considerations

Proof. Let {x′
1, x

′
2, . . .} ⊆ U ′ be a countable set that separates the points

of X, and let A be a weakly compact subset of X. Since, by Theorem 3.25,
the set A is norm bounded we have

d(x, y) =
∞∑

n=1

2−n
∣∣x′

n(x− y)
∣∣

is well defined for each x, y ∈ A. Clearly, d is a metric on A, and moreover
it is easy to see that the identity mapping I : (A, w) → (A, d) is continuous.
Since A is weakly compact, this implies that I is a homeomorphism, and
the conclusion follows.

The proof of the Eberlein–Šmulian theorem will be based upon the fol-
lowing ingenious lemma that is essentially due to R. J. Whitley [190].

Lemma 3.39 (Whitley). Let A be a norm bounded subset of a normed space
X, and let x′′ be a σ(X ′′, X ′)-closure point of A in X ′′. Then there exists a
sequence {xn} of A (depending upon x′′) such that:

(a) {xn} has at most one weak accumulation point in X.

(b) If {xn} has a weak accumulation point, then x′′ belongs to X and
is the weak accumulation point of {xn}.

Proof. Let x′′ be a σ(X ′′, X ′)-closure point of A in X ′′. We shall construct
by induction a strictly increasing sequence {kn} of natural numbers and
sequences {xn} ⊆ A and {x′

n} ⊆ X ′ such that:

(1) ‖x′
n‖ = 1 for each n.

(2) If y′′ belongs to the vector subspace generated by{
x′′, x′′−x1, . . . , x

′′−xn

}
in X ′′, then max

{∣∣y′′(x′
i)
∣∣ : i = 1, . . . , kn+1

}
≥ 1

2‖y′′‖.
(3) For each n we have max

{∣∣(x′′−xn)(x′
i)
∣∣ : i = 1, . . . , kn

}
< 1

n .

To see this, fix some x′
1 ∈ X ′ with ‖x′

1‖ = 1, and let k1 = 1. Since x′′ is a
σ(X ′′, X ′)-closure point of A, there is some x1 ∈ A with |(x′′−x1)|(x′

1)| < 1.
For the basic step of the induction, assume that {k1, . . . , kn}, {x1, . . . , xn},
and {x′

1, . . . , x
′
kn
} have been constructed. Let Y be the vector subspace of

X ′′ generated by {x, x′′−x1, . . . , x
′′−xn}. Since S =

{
y′′ ∈ Y : ‖y′′‖ = 1

}
is a norm compact set (see Theorem 3.28), there exists y′′kn+1, . . . , y

′′
kn+1

∈ S

such that whenever y′′ ∈ Y satisfies ‖y′′‖ = 1, then ‖y′′− y′′i ‖ < 1
4 holds for

some kn + 1 ≤ i ≤ kn+1. Now for each kn + 1 ≤ i ≤ kn+1 pick some x′
i ∈ X ′

with ‖x′
i‖ = 1 and |y′′i (x′

i)| > 3
4 , and note that

max
{∣∣y′′(x′

i)
∣∣ : i = kn +1, . . . , kn+1

}
≥ 1

2‖y
′′‖
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holds for all y′′ ∈ Y . Since x′′ is a σ(X ′′, X ′)-closure point of A, there exists
some xn+1 ∈ A satisfying

∣∣(x′′−xn+1)(x′
i

∣∣ < 1
n+1 for each i = 1, . . . , kn+1.

It is a routine matter to verify that the above constructed sequences satisfy
(1)–(3).

Next, we claim that the sequence {xn} satisfies the properties of the
lemma. Let x ∈ X be a w-accumulation point of {xn}. It is enough to show
that x = x′′.

To this end, note first that by Theorem 3.13 the vector x belongs to the
norm closure of the vector subspace of X generated by {x1, x2, . . .}. Thus,
if Z denotes the vector subspace generated by

{
x′′, x′′−x1, x

′′−x2, . . .
}

in
X ′′, then x′′−x belongs to the norm closure of Z. Since by (2) every
y′′ ∈ Z satisfies sup

{
|y′′(x′

i)| : i = 1, 2, . . .
}
≥ 1

2‖y′′‖, we see that the same
inequality holds true for every point in the closure of Z. In particular, we
have

sup
{∣∣(x′′−x)(x′

i)
∣∣ : i = 1, 2, . . .

}
≥ 1

2‖x
′′−x‖ . (�)

Now let i be fixed. Given ε > 0 and p > i, choose some n > p such
that

∣∣x′
i(xn −x)

∣∣ < ε. (Such an n ∈ N exists since x is a w-accumulation
point of {xn}. Taking into account that i < n ≤ kn holds, it follows from
property (3) that∣∣(x′′−x)(x′

i)
∣∣ ≤ ∣∣(x′′−xn)(xi

′)
∣∣+ ∣∣(xn −x)(x′

i)
∣∣ < 1

n + ε < 1
p + ε .

Since ε > 0 and p > i are arbitrary, (x′′−x)(x′
i) = 0 holds for all i. Now a

glance at (�) shows that x′′ = x must hold, and the proof is finished.

We are now ready to prove that a set is weakly relatively compact if and
only if every sequence of the set has a weakly convergent subsequence. This
important result is due to W. F. Eberlein [58] and V. L. Šmulian [179].

Theorem 3.40 (Eberlein–Šmulian). A subset A of a normed space X is
weakly relatively compact (resp. weakly compact) if and only if every sequence
of A has a subsequence that converges to some vector of X (resp. to some
vector of A).

Proof. We prove the result for the weakly relatively compact sets, and
leave the identical arguments for the weakly compact sets to the reader.
Assume first that A is weakly relatively compact. Taking the weak closure
of A, we can assume that A is weakly compact. Let {xn} be a sequence
of A, and denote by Y the norm closed vector subspace of X generated by
{xn}. Clearly, Y is separable, {xn} ⊆ A ∩ Y holds, and (by Lemma 3.36)
A ∩ Y is σ(Y, Y ′)-compact. Now, by Theorem 3.38, σ(Y, Y ′) is metrizable
on A ∩ Y , and so {xn} has a σ(Y, Y ′)-convergent subsequence in Y . The
same subsequence converges (by Lemma 3.36) weakly in X.
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For the converse, assume that every sequence of A has a weakly conver-
gent subsequence in X. By Alaoglu’s Theorem 3.20 the σ(X ′′, X ′)-closure A
of A in X ′′ is σ(X ′′, X ′)-compact. Now an easy application of Lemma 3.39
shows that A ⊆ X holds, and since σ(X ′′, X ′) induces σ(X, X ′) on X, it
follows that A is weakly relatively compact.

Our next goal is to establish (with the help of the Eberlein–Šmulian
theorem) that in a Banach space the convex circled hull of a weakly relatively
compact set is itself weakly relatively compact.

To do this, we need a result that is also of some independent interest.
Let X be a Banach space, and let f be a linear functional on X ′. We
already know (see Theorem 3.16) that if f is weak∗ continuous, then it can
be represented by a unique point of X. It is surprising to learn that the
weak∗ continuity of f on U ′ is sufficient to guarantee such a representation
for f . This was established first by S. Banach [30] for the separable case.
(The interested reader can find various extensions to locally convex spaces
in H. H. Schaefer [173, Section 6, p. 147] and J. Horváth [76, Section 11,
p. 247].)

Theorem 3.41 (Banach). If X is a Banach space and f is a linear func-
tional on X ′, then the following statements are equivalent.

(1) f is weak∗ continuous on X ′.
(2) f is weak∗ continuous on the closed unit ball of X ′.

Proof. (1) =⇒ (2) Obvious.

(2) =⇒ (1) Observe first that since (U ′, w∗) is a compact topological
space, f(U ′) must be a bounded subset of R, and so f ∈ X ′′. Consider the
dual system 〈X ′, X ′′〉 and view X as a subset of X ′′.

Let ε > 0. By the w∗-continuity of f at zero on U ′, there exists a finite
subset D = {x1, . . . , xn} of X such that x′ ∈ Do ∩ U ′ implies |f(x′)| ≤ ε,
that is

f ∈ ε(Do ∩ U ′)o = ε[Do ∩ (U ′′)o]o = ε[(D ∪ U ′′)o]o

= ε(D ∪ U ′′)oo . (†)
Now note that by the bipolar theorem, we have

Doo =
{ n∑

i=1

λixi :
n∑

i=1

|λi| ≤ 1
}

,

and so Doo is a subset of X. By Lemma 3.11 the set Doo +U ′′ is σ(X ′′, X ′)-
closed. Since D∪U ′′ ⊆ Doo +U ′′ holds and since Doo +U ′′ is clearly convex
and circled, it follows from the bipolar theorem that (D∪U ′′)oo ⊆ Doo +U ′′.
From (†) we see that f ∈ ε(Doo+U ′′), and so there exists some x ∈ Doo ⊆ X
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such that ‖f − εx‖ ≤ ε. This means that f belongs to the norm closure of
X in X ′′ which (since X is a Banach space) equals X. Therefore, f ∈ X,
and the proof is finished.

We now have the background to prove that the convex circled hull of a
weakly relatively compact set in a Banach space is itself weakly relatively
compact. This important result is due to M. Krein and V. Šmulian [104].

Theorem 3.42 (Krein–Šmulian). The convex circled hull (and hence the
convex hull ) of a weakly relatively compact subset of a Banach space is weakly
relatively compact.

Proof. Let A be a weakly relatively compact subset of a Banach space X.
Replacing A by its weak closure, we can assume that A is weakly compact.
In particular, note that A is norm bounded, and so there exists some M > 0
such that ‖x‖ ≤ M holds for all x ∈ A. Now let {un} be a sequence in the
convex circled hull of A. To complete the proof, it is enough to establish
(by Theorem 3.40) that {un} has a weakly convergent subsequence in X.

To this end, note first that each un is a linear combination of a finite
subset of A. Thus, there exists an at most countable subset A0 of A such
that each un is a linear combination of a finite subset of A0. If Y denotes the
closed vector subspace of X generated by A0, then Y is a separable Banach
space, {un} ⊆ Y , and (by Lemma 3.36) the set A ∩ Y is σ(Y, Y ′)-compact.
Thus, using Lemma 3.36 again, we see that by replacing X with Y (if neces-
sary), we can assume without loss of generality that X is a separable Banach
space. In doing so, we gain that w∗ is metrizable on U ′; see Theorem 3.34.

Now consider the compact topological space (A, w) and the Banach space
C(A) of all continuous real-valued functions (with the sup norm). Note that
for each x′ ∈ X ′ the restriction Rx′ of x′ to A belongs to C(A). Thus,
the restriction process defines an operator R : X ′ → C(A). By the Riesz
representation theorem (see, for instance [8, Section 38]) we know that C ′(A)
consists of all regular Borel measures on A.

Let µ ∈ C ′(A) be fixed. Then the formula

f(x′) =
〈
Rx′, µ

〉
=
∫

A
R(x′) dµ

defines a linear functional on X ′, and we claim that f is w∗-continuous on
U ′. To see this, let x′

n−→w
∗

x′ in U ′. Since |x′
n(x)| ≤ M holds for all x ∈ A,

it follows from the Lebesgue dominated convergence theorem that

f(x′
n) =

∫
A

R(x′
n) dµ −→

∫
A

R(x′) dµ = f(x′) ,
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and hence f is w∗-continuous on U ′. Therefore, by Theorem 3.41 there exists
a unique x ∈ X satisfying 〈Rx′, µ〉 = 〈x′, x〉 for all x′ ∈ X ′. This shows
that R′µ = x holds, and hence R′ : C ′(A) → X.

From 〈Rx′, µ〉 = 〈x′, R′µ〉 and R′ : C ′(A) → X, it follows that R′ is con-
tinuous for σ(C ′(A), C(A)) and σ(X, X ′). Let B=

{
µ ∈ C ′(A) : ‖µ‖≤1

}
.

Then (by Alaoglu’s Theorem 3.20) B is w∗-compact, and hence R′(B) is a
weakly compact subset of X. Since B is convex and circled, R′(B) is also
convex and circled. Now for each x ∈ A, let δx denote the Dirac measure
supported at x, i.e., 〈f, δx〉 = f(x) holds for all f ∈ C(A). Clearly, δx ∈ B
and R′(δx) = x for each x ∈ A. Thus, A ⊆ R′(B) holds. In particular,
we have {un} ⊆ R′(B), and so by Theorem 3.40 the sequence {un} has a
convergent subsequence in X, as desired.

If a sequence {xn} in a normed space satisfies xn−→w x, then it is easy to
see that the set {x, x1, x2, . . .} is weakly compact, and so the set {x1, x2, . . .}
is weakly relatively compact. Therefore, the following consequence of the
preceding theorem should be immediate.

Corollary 3.43. If {xn} is a weakly convergent sequence in a Banach space,
then the set { ∞∑

n=1

λnxn :
∞∑

n=1

|λn| ≤ 1
}

is weakly relatively compact.

Finally, we close the section we another useful characterization of the
weakly compact sets.

Theorem 3.44 (Grothendieck). A subset A of a Banach space X is weakly
relatively compact if and only if for each ε > 0 there exists a weakly compact
subset W of X satisfying

A ⊆ W + εU .

Proof. If A is weakly relatively compact, then it should be clear that it
satisfies the desired condition. For the converse, assume that A satisfies the
stated condition.

Fix ε > 0 and then pick a weakly compact subset W of X such that
A ⊆ W + εU ⊆ W + εU ′′. Clearly, A is a norm bounded set, and so its
w∗-closure A in X ′′ is w∗-compact. On the other hand, it follows from
Lemma 3.11 that A ⊆ W + εU ′′. Thus, A ⊆ X + εU ′′ holds for each
ε > 0. Since X is norm closed in X ′′, it follows that A ⊆ X. Taking into
consideration that σ(X ′′, X ′) induces σ(X, X ′) on X, we conclude that A is
a weakly relatively compact subset of X, as desired.
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Exercises

1. Let (X, τ) be a Hausdorff topological vector space, and let Y and Z be
two τ -closed vector subspaces.
(a) Give an example where Y + Z is not a τ -closed vector subspace.
(b) If Y is finite dimensional, then show that Y + Z is a τ -closed vector

subspace.
[Hint : For (b) consider the canonical projection Q : X → X/Z. Since Z
is τ -closed X/Z is a Hausdorff topological vector space; see Exercise 12
of Section 3.1. By Corollary 3.29 we know that Q(Y ) is a closed vector
subspace of X/Z. Now note that Y + Z = Q−1

(
Q(Y )

)
. ]

2. If the range of an operator T : X → Y between two topological vector
spaces is finite dimensional, then show that T is continuous if and only
if Ker (T ) is a closed vector subspace of X. [Hint : Put Z = Ker(T ), and
consider the diagram

X Y

X/Z

T

φ

where φ is the canonical projection of X onto X/Z. ]

3. Show that in a normed space the weak topology coincides with the norm
topology if and only if the vector space is finite dimensional.

4. Show that in a normed space the norm is weakly lower semicontinuous,
i.e., show that xα−→w x implies ‖x‖ ≤ lim inf ‖xα‖.

5. Show that if the dual of a normed space X is separable, then X is also
separable. [Hint : If {x′

1, x
′
2, . . .} is a countable dense subset of X ′, then

for each n pick some xn ∈ X with ‖xn‖ = 1 and |x′
n(xn)| ≥ 1

2‖x′
n‖. Now

consider the norm closed vector subspace of X generated by {x1, x2, . . .}. ]
6. Show that a normed space X is reflexive if and only if the weak and weak∗

topologies on X ′ coincide.

7. Show that if a normed space X is separable, then every norm bounded
sequence of X ′ has a w∗-convergent subsequence.

8. If xn−→w 0 holds in a normed space, then show that there exist integers
0 = k0 < k1 < · · · and a sequence {αn} ⊆ [0, 1] such that:
(a)
∑kn+1

i=kn+1αi = 1 for n = 0, 1, 2, . . . .
(b) If yn =

∑kn+1
i=kn+1αixi, then

∑∞
n=0 ‖yn‖ < ∞ .

[Hint : For each fixed k note that the zero vector is in the weak closure
of the set co {xn : n > k}. Consequently, given any ε > 0 there exist (by
Theorem 3.13) αk+1, . . . , αk+p ∈ [0, 1] with αk+1 + · · · + αk+p = 1 and
‖αk+1xk+1 + · · · + αk+pxk+p‖ < ε. ]

9. Let Ω be a Hausdorff compact topological space, and consider the Banach
space C(Ω) with the sup norm. Show that a sequence {fn} ⊆ C(Ω)
satisfies fn−→w 0 if and only if
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(a) {fn} is norm bounded, and
(b) fn(ω) → 0 holds in R for each ω ∈ Ω.

10. The function rn : [0, 1] → R defined by rn(t) = sgn sin(2nπt) is known
as the nth Rademacher function.
(a) Draw the graph of rn.
(b) Show that rn−→w 0 holds in L1[0, 1].
(c) Does rn−→w 0 hold in Lp[0, 1] for 1 < p < ∞?

11. If fn(t) = sin(nt), then show that fn−→w 0 in Lp[0, 1] for each 1 ≤ p < ∞.

12. Show that a Banach space X is reflexive if and only if every closed vector
subspace of X is reflexive.

13. Let A be a compact subset of a normed space. Show that there exists a
null sequence whose convex closed hull includes A.

14. Let A be a (nonempty) norm bounded subset of c0, the Banach space of
all null real sequences with the sup norm. Put

sn = sup
{
|an| : a = (a1, a2, . . .) ∈ A

}
, n = 1, 2, . . . .

Show that A is norm totally bounded if and only if sn → 0. [Hint :
Assume that sn → 0 and let ε > 0. Pick some k with sn < ε for all n > k,
and note that

A ⊆ [−s1, s1] × · · · × [−sk, sk] × {0} × {0} × · · · + εU .

Now apply Theorem 3.1. ]

15. Let A be a (nonempty) norm bounded subset of �p (1 ≤ p < ∞). Put

sn = sup
{ ∞∑

i=n

|ai|p : a = (a1, a2, . . .) ∈ A
}

, n = 1, 2, . . . .

Show that A is norm totally bounded if and only if sn → 0.

16. For a continuous operator T : X → Y between two Banach spaces estab-
lish the following statements.
(a) If T is onto, then T ′ is one-to-one.
(b) If T ′ is onto, then T is one-to-one.
(c) If T is one-to-one and has a closed range, then T ′ is onto.
(d) The range of T is dense in Y if and only if T ′ is one-to-one.

17. Let T : X → Y be an operator between two normed spaces. Recall that
the norm of T is defined by

‖T‖ = sup
{
‖Tx‖ : ‖x‖ = 1

}
.

Show that:
(a) ‖T‖ = sup

{
‖Tx‖ : ‖x‖ ≤ 1

}
.

(b) T is continuous if and only if ‖T‖ < ∞.
(c) If T is continuous, then its adjoint T ′ : Y ′ → X ′ is also continuous

and ‖T ′‖ = ‖T‖ holds.
(d) If T is an isometry (i.e., if ‖Tx‖ = ‖x‖ holds for all x ∈ X), then

T ′′ : X ′′ → Y ′′ is likewise an isometry.
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[Hint : For (d) let x′′ ∈ X ′′. If x′ ∈ X ′ satisfies ‖x′‖ = 1, then show that
there exists some y′ ∈ Y ′ with ‖y′‖ = 1 and T ′y′ = x′. Now note that

〈x′, x′′〉 = 〈T ′y′, x′′〉 = 〈y′, T ′′x′′〉 ≤ ‖T ′′x′′‖ ≤ ‖x′′‖. ]

3.3. Locally Convex-Solid Riesz Spaces

The locally convex-solid topologies bind the algebraic and lattice structures
of Riesz spaces together. They were introduced by G. T. Roberts [168] and
they were studied systematically for the first time by I. Namioka [153] and
H. H. Schaefer [171]. The reader can find extensive treatments of locally
solid topologies in the authors’ book [7] and in the book by D. H. Frem-
lin [64]. Recall that a subset A of a Riesz space is called solid whenever
|x| ≤ |y| and y ∈ A imply x ∈ A. Clearly, every solid set is circled.

Let E be a Riesz space. A seminorm p on E is said to be a lattice (or a
Riesz) seminorm whenever |x| ≤ |y| in E implies p(x) ≤ p(y). Note that
a seminorm p on E is a lattice seminorm if and only if its closed unit ball,
i.e., the set Up :=

{
x ∈ E : p(x) ≤ 1

}
, is a solid set. Indeed, observe first

that if p is a lattice seminorm, then Up is a solid set. On the other hand, if
Up is a solid set and |x| ≤ |y| holds in E, then we have

∣∣ 1
p(y)+εx

∣∣ ≤ ∣∣ 1
p(y)+εy

∣∣ and 1
p(y)+εy ∈ Up ,

and so 1
p(y)+εx ∈ Up for all ε > 0. Thus, p(x) ≤ p(y) + ε holds for all

ε > 0, and so p(x) ≤ p(y), proving that p is a lattice seminorm. A locally
convex topology τ on E that is generated by a family of lattice seminorms
is referred to as a locally convex-solid topology (and (E, τ) is called a
locally convex-solid Riesz space). By the above discussion the following
result should now be immediate.

Theorem 3.45. A locally convex topology on a Riesz space is locally convex-
solid if and only if it has a base at zero consisting of convex and solid sets.

In a Riesz space E, the functions

(1) x �→ x+ from E to E,

(2) x �→ x− from E to E,

(3) x �→ |x| from E to E,

(4) (x, y) �→ x ∨ y from E × E to E, and

(5) (x, y) �→ x ∧ y from E × E to E,

are referred to as the lattice operations of E. From the lattice inequali-
ties of Theorem 1.9, it should be immediate that every locally convex-solid
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topology on E makes the lattice operations continuous (in fact, uniformly
continuous) functions.

At this point it should be remarked that the lattice operations in a
locally convex-solid Riesz space are seldom weakly continuous. For instance,
consider E = L1[0, 1] with the locally convex-solid topology generated by
the L1-norm, and note that E′ = L∞[0, 1]. Now if xn(t) = sin(πnt), then (by
the Riemann–Lebesgue lemma) we have xn−→w 0. On the other hand, since∫ 1
0 | sin(πnt)| dt = 2

π holds for all n, we infer that {|xn|} does not converge
weakly to zero. Thus, x �→ |x| is not weakly continuous on L1[0, 1].

Some immediate consequences of the continuity of the lattice operations
are included in the next result.

Theorem 3.46. In a (Hausdorff ) locally convex-solid Riesz space (E, τ) the
following statements hold:

(1) The positive cone E+ is τ -closed.

(2) If a net {xα} of E satisfies xα ↑ and xα−→τ x, then x = sup{xα}.
(3) Every band of E is τ -closed.

(4) The τ -closure of a Riesz subspace of E is also a Riesz subspace.

Proof. (1) Since x �→ x− is continuous and E+ = {x ∈ E : x− = 0} holds,
we see that E+ is τ -closed.

(2) Since xβ −xα−→τ x−xα and xβ −xα ∈ E+ holds for all β � α,
it follows from (1) that x−xα ∈ E+ for each α. Thus, x is an upper
bound of the net {xα}. On the other hand, if xα ≤ y holds for all α, then
0 ≤ y−xα−→τ y−x implies y−x ≥ 0, and so y ≥ x. In other words, xα ↑ x
holds in E.

(3) Let A be a subset of E. From Ad =
{
x ∈ E : |x|∧|y| = 0 for all y∈A

}
,

it is easy to see that Ad is τ -closed. Now if B is a band of E, then B = Bdd

holds, and so B is τ -closed.

(4) This follows from the continuity of the lattice operations.

A few elementary properties of locally convex-solid Riesz spaces are in-
cluded in the next result.

Theorem 3.47. If τ is a locally convex-solid topology on a Riesz space E,
then the following statements hold:

(1) The order bounded subsets of E are τ -bounded.

(2) The τ -closure of a solid subset of E is likewise solid (and hence the
τ -closure of an ideal is also an ideal ).
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Proof. (1) Let [x, y] be an order interval. If V is a solid τ -neighborhood of
zero, then pick some λ > 0 with λ(|x|+ |y|) ∈ V , and note that λ[x, y] ⊆ V .

(2) Let A be a solid set. Assume that |x| ≤ |y| holds with y ∈ A, the
τ -closure of the set A. Pick a net {yα} ⊆ A with yα−→τ y, and then put
xα = (x∧|yα|)∨(−|yα|) for each α. Clearly, |xα| ≤ |yα| holds for each α, and
so {xα} ⊆ A. On the other hand, the continuity of the lattice operations
implies that xα−→τ x, and so x ∈ A. Thus, A is a solid set.

An immediate consequence of the preceding result is that in a locally
convex-solid Riesz space (E, τ) the convex, solid, and τ -closed neighbor-
hoods of zero is a base at zero. In turn, this implies that if A is a τ -bounded
subset of E, then its solid hull is likewise τ -bounded. Recall that the solid
hull is the smallest solid set including A and is exactly the set

Sol (A) :=
{
x ∈ E : ∃ y ∈ A with |x| ≤ |y|

}
.

It should be noted that the convex hull of a solid set is also solid. However,
the solid hull of a convex set need not be convex.

It is useful to know that when the lattice operations are applied to totally
bounded sets, then they also produce totally bounded sets.

Theorem 3.48. Let (E, τ) be a locally convex-solid Riesz space. If A and
B are two τ -totally bounded subsets of E, then the sets

A+ , A− , |A| , A ∨ B , and A ∧ B

are likewise τ -totally bounded.

Proof. We prove first that A ∨ B is τ -totally bounded. To this end, let V
be a solid τ -neighborhood of zero. Pick two finite subsets Φ1 and Φ2 with
A ⊆ Φ1 + V and B ⊆ Φ2 + V . If a ∈ A and b ∈ B, then pick x ∈ Φ1

and y ∈ Φ2 with a − x ∈ V and b − y ∈ V , and then use the inequality
|a∨b−x∨y| ≤ |a−x|+ |b−y| to obtain |a∨b−x∨y| ∈ V +V . The solidness
of V +V implies that a∨b−x∨y ∈ V +V , and so A∨B ⊆ Φ1∨Φ2 +V +V ,
which (by Theorem 3.1) shows that A ∨ B is a τ -totally bounded set.

Next, note that we have the relations

A+ = A ∨ {0} , A− = (−A) ∨ {0} , |A| ⊆ A ∨ (−A) ,

and
A ∧ B ⊆ A + B − A ∨ B .

Now use the preceding case to complete the proof.

The topological dual of a locally-convex solid Riesz space is always a
Riesz space and, in fact, it is an ideal in its order dual.
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Theorem 3.49. The topological dual E′ of a locally convex-solid Riesz space
(E, τ) is an ideal in its order dual E∼ (and hence E′ is a Dedekind complete
Riesz space in its own right). Moreover, for each f, g ∈ E′ and x ∈ E+ we
have

[f ∨ g](x) = sup
{
f(y) + g(z) : y, z ∈ E+ and y + z = x

}
and

[f ∧ g](x) = inf
{
f(y) + g(z) : y, z ∈ E+ and y + z = x

}
.

Proof. By Theorem 3.47, every order bounded set is τ -bounded. Thus,
each f ∈ E′ carries order bounded sets to bounded subsets of R, and hence
E′ is a vector subspace of E∼.

To see that E′ is an ideal of E∼, assume that |g| ≤ |f | holds in E∼ with
f ∈ E′. By Theorem 3.5 there exists a τ -continuous lattice seminorm p on
E satisfying |f(x)| ≤ p(x) for each x ∈ E. Now applying Theorem 1.18, we
see that ∣∣g(x)

∣∣ ≤ |g|
(
|x|
)
≤ |f |
(
|x|
)

= sup
{
|f(y)| : |y| ≤ |x|

}
≤ p(x)

also holds for all x ∈ E. Therefore, g is likewise τ -continuous. For the lattice
operations use Theorem 1.18.

Let E be a Riesz space. Then every f ∈ E∼ defines a lattice seminorm
pf on E via the formula

pf (x) = |f |
(
|x|
)
, x ∈ E .

In particular, every nonempty subset A of E∼ generates a (not necessarily
Hausdorff) locally convex-solid topology on E via the family of lattice semi-
norms {pf : f ∈ A}. This topology is called the absolute weak topology
generated by A on E and is denoted by |σ|(E, A). (Of course, if A separates
the points of E, then |σ|(E, A) is a Hausdorff topology.) As we shall see
next, the topological dual of

(
E, |σ|(E, A)

)
is precisely the ideal generated

by A in E∼. This result is due to S. Kaplan [93, Note II].

Theorem 3.50 (Kaplan). Let E be a Riesz space and let A be a nonempty
subset of E∼. Then the topological dual of

(
E, |σ|(E, A)

)
is precisely the

ideal generated by A in E∼.

Proof. Let E′ be the topological dual of
(
E, |σ|(E, A)

)
. Theorem 3.49

shows that E′ is an ideal of E∼. From the inequality |f(x)| ≤ |f |(|x|), it
follows that A ⊆ E′, and so the ideal generated by A is included in E′.

To see that E′ is also included in the ideal generated by A in E∼, let
f ∈ E′. Then there exist linear functionals f1, . . . , fn ∈ A and some λ > 0
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such that |f(x)| ≤ λ
∑n

i=1 |fi|(|x|) holds for all x ∈ E. Therefore, if x ∈ E+,
then it follows from Theorem 1.18 that

|f |(x) = sup
{
|f(y)| : |y| ≤ x

}
≤ λ

n∑
i=1

|fi|(x) .

Hence, |f | ≤ λ
∑n

i=1 |fi| holds, and so f belongs to the ideal generated by
A in E∼, as desired.

We now introduce the concept of a Riesz dual system.

Definition 3.51. Let E be a Riesz space, and let E′ be an ideal of E∼

separating the points of E. Then the pair 〈E, E′〉, under its natural duality
〈x, x′〉 := x′(x), will be referred to as a Riesz dual system.

Consider a Riesz dual system 〈E, E′〉. Note that the polars of solid sets
are solid. To see this, let A ⊆ E be a solid set, and let |y′| ≤ |x′| hold in E′

with x′ ∈ Ao. Then for each x ∈ A, it follows from Theorem 1.18 that∣∣〈x, y′〉
∣∣ ≤ 〈|x|, |y′|〉 ≤ 〈|x|, |x′|〉 = sup

{
|〈y, x′〉| : |y| ≤ |x|

}
≤ 1 ,

and so y′ ∈ Ao. (If A is a solid subset of E′, then use Theorem 1.23 instead
of Theorem 1.18.) Also, arguing as in the proof of Theorem 1.69, we see
that the mapping x �→ x̂, where x̂(x′) = x′(x) for each x′ ∈ E′, is a lattice
isomorphism from E into (E′)∼n . Thus, E can be considered as a Riesz
subspace of (E′)∼n (and hence as a Riesz subspace of (E′)∼).

In case (E, τ) is a Hausdorff locally convex-solid Riesz space, E′ is an
ideal of E∼ separating the points of E , and so 〈E, E′〉 under the duality
〈x, x′〉 = x′(x) is a Riesz dual system. In fact, this example is representative
of the arbitrary Riesz dual system. The following discussion will clarify the
situation.

Let 〈E, E′〉 be a Riesz dual system. Then, according to Theorem 3.50,
the topological dual of

(
E, |σ|(E, E′)

)
is precisely E′, and so |σ|(E, E′) is

consistent with 〈E, E′〉. That is,

σ(E, E′) ⊆ |σ|(E, E′) ⊆ τ(E, E′)

holds. On the other hand, if τ is a consistent locally convex-solid topology
on E, then it is easy to see that xα−→τ 0 implies xα−→|σ|(E,E′) 0, and so
|σ|(E, E′) ⊆ τ holds. In other words, |σ|(E, E′) is the smallest locally
convex-solid topology on E which is consistent with 〈E, E′〉.

Now if B is a base at zero consisting of solid convex τ -neighborhoods of
zero, then (by Theorem 3.22) τ is the S-topology for S =

{
V o : V ∈ B

}
.

This shows that every consistent locally convex-solid topology on E is an S-
topology for some collection of solid, convex, and σ(E′, E)-compact subsets
of E′. Thus, if we define the absolute Mackey topology |τ |(E′, E) as the
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S-topology for the collection of all solid, convex and σ(E′, E)-compact sets,
then |τ |(E, E′) is consistent with 〈E, E′〉. Moreover, a locally convex-solid
topology τ on E is consistent if and only if |σ|(E, E′) ⊆ τ ⊆ |τ |(E, E′)
holds. Therefore, the “spectrum” of the locally convex-solid topologies on
E consistent with 〈E, E′〉 is slightly narrower than that of the consistent
locally convex topologies on E.

Since the absolute weak topology |σ|(E, E′) is a consistent locally
convex-solid topology on E, it follows from Theorem 3.25 that a subset
of E is σ(E, E′)-bounded if and only if its solid hull is σ(E, E′)-bounded.
From this observation we easily infer that the strong topology β(E′, E) is
the S-topology for the collection of all σ(E, E′)-bounded solid subsets of
E. Therefore, β(E′, E) is a locally convex-solid topology on E′. By Theo-
rem 3.49 the topological dual E′′ of

(
E′, β(E′, E)

)
is also an ideal of (E′)∼,

and so 〈E′, E′′〉 is also a Riesz dual system.
The next result is a Dini-type theorem. It shows that monotone conver-

gence plus pointwise convergence imply topological convergence.

Theorem 3.52. Assume that a net {xα} in a locally convex-solid Riesz
space (E, τ) satisfies xα ↓ 0. Then xα−→τ 0 if and only if xα−→σ(E,E′) 0.

Proof. Let xα ↓ 0 in E, and assume that xα−→σ(E,E′) 0. It is enough to
show that xα−→τ 0 holds.

To this end, let V be a solid τ -neighborhood of zero. Note that zero
belongs to the σ(E, E′)-closure of co {xα}. By Theorem 3.13, zero must
belong to the τ -closure of co {xα}, and so V ∩ co {xα} �= �©. Pick indices
α1, . . . , αn and positive constants λ1, . . . , λn with λ1 + · · · + λn = 1 and
λ1xα1 + · · ·+λnxαn ∈ V . Now if α � αi for each i = 1, . . . , n, then it follows
from

0 ≤ xα =
n∑

i=1

λixα ≤
n∑

i=1

λixαi ∈ V

that xα ∈ V . This shows that xα−→τ 0 holds, as desired.

Topologies for which order convergence implies topological convergence
are very useful. They are known as order continuous topologies.

Definition 3.53. A linear topology τ on a Riesz space is said to be order
continuous whenever xα ↓ 0 implies xα−→τ 0.

A lattice seminorm p on a Riesz space is said to be order continuous
if xα ↓ 0 implies p(xα) ↓ 0. Note that a locally convex-solid topology on a
Riesz space is order continuous if and only if it is generated by a family of
order continuous lattice seminorms.
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Theorem 3.54. For a Riesz dual system 〈E, E′〉 the following statements
are equivalent.

(1) Every consistent locally convex-solid topology on E is order contin-
uous.

(2) σ(E, E′) is order continuous.

(3) E′ ⊆ E∼
n holds.

(4) Every band of E′ is σ(E′, E)-closed.

(5) E is an order dense Riesz subspace of (E′)∼n .

Proof. (1) ⇐⇒ (2) By Theorem 3.50 the locally convex-solid topology
|σ|(E, E′) is consistent with 〈E, E′〉. The equivalence of (1) and (2) is now
an easy consequence of Theorem 3.52.

(2) =⇒ (3) Obvious.

(3) =⇒ (4) Let B be a band of E′, and let {fα} ⊆ B satisfy
fα−→σ(E′,E) f in E′. Write f = g + h with f ∈ B and h ∈ Bd. We have to
show that h = 0, and for this it is enough to establish that Ch = {0}. So,
let 0 ≤ x ∈ Ch.

Note that if φα = fα − g, then {φα} ⊆ B and φα−→σ(E′,E) h. By
Theorem 1.67 we have Ch ⊆ Nφα for each α. Thus, for each y ∈ Ch we also
have h(y) = limφα(y) = 0, and so |h|(x) = sup

{
|h(y)| : |y| ≤ x

}
= 0, and

hence x = 0, as desired.

(4) =⇒ (5) Let 0 < φ ∈ (E′)∼n . We have to establish the existence of
some x ∈ E satisfying 0 < x ≤ φ. The proof is along the lines of that of
Theorem 1.70.

Fix some 0 < f ∈ Cφ. Since (by hypothesis) the band Bd
f is σ(E′, E)-

closed and f /∈ Bd
f , there exists (by Theorems 3.7 and 3.16) some u ∈ E with

f(u) �= 0 and g(u) = 0 for all g ∈ Bd
f . An easy application of Theorem 1.23

shows that we can assume u > 0. Note that u∧φ > 0. (Indeed, if u∧φ = 0
holds, then by Theorem 1.67 we have Cφ ⊆ Nu, and so f(u) = 0, contrary to
the choice of u.) Thus, replacing φ by φ∧ u, we can assume that 0 < φ ≤ u
holds in (E′)∼n . Next pick some 0 < ε < 1 with ψ = (φ− εu)+ > 0. Fix some
0 < h ∈ Cψ, and then (as above) choose some 0 < v ∈ E with h(v) > 0 and
g(v) = 0 for all g ⊥ h. Put x = v ∧ εu ∈ E, and we claim that 0 < x ≤ φ
holds in (E′)∼n .

We show first that x > 0 holds. Indeed, if x = v∧εu = 0, then u∧v = 0,
and so ψ ∧ v = 0. The latter (by Theorem 1.67) implies Cψ ⊆ Nv, and so
h(v) = v(h) = 0, a contradiction. Thus, x > 0 holds.
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Finally, we prove that x ≤ φ. To see this, assume by way of contradiction
that ω = (x − φ)+ > 0. Pick some 0 < g ∈ Cω. From

0 ≤ ω = (x − φ)+ ≤ (εu − φ)+ = (φ − εu)− ⊥ (φ − εu)+ = ψ

and Theorem 1.67, we see that Cω ⊥ Cψ. In particular, we have g ⊥ h, and
so

0 < ω(g) = (x − φ)+(g) ≤ v(g) = g(v) = 0 ,

which is a contradiction. Thus, 0 < x ≤ φ holds, as desired.

(5) =⇒ (2) Let xα ↓ 0 in E. Then xα ↓ 0 holds in (E′)∼n , and so f(xα) ↓ 0
holds for each 0 ≤ f ∈ E′. Thus, xα−→σ(E,E′) holds, and the proof of the
theorem is finished.

Statement (4) of the preceding theorem is essentially due to W. A. J. Lux-
emburg and A. C. Zaanen [130, Note XI].

If 〈E, E′〉 is a Riesz dual system, then the absolute weak topology
|σ|(E′, E) on E′ is the locally convex-solid topology generated by the family
of lattice seminorms {px : x ∈ E}, where

px(x′) = |x′|(|x|) , x′ ∈ E′ .

It is easy to see that each px is order continuous, and so |σ|(E′, E) is always
order continuous. From the identities

|x′|(|x|) = sup
{
|x′(y)| : |y| ≤ |x|

}
= sup

{
|y′(x)| : |y′| ≤ |x′|

}
,

the following result should be clear.

Theorem 3.55. If 〈E, E′〉 is a Riesz dual system, then:

(1) The topology |σ|(E, E′) on E is the S-topology of uniform conver-
gence on the order intervals of E′.

(2) The topology |σ|(E′, E) on E′ is the S-topology of uniform conver-
gence on the order intervals of E.

In general, the topology |σ|(E′, E) is not consistent with 〈E, E′〉. In
order to characterize the consistency of |σ|(E′, E) we need a lemma.

Lemma 3.56. Let 〈E, E′〉 be a Riesz dual system. For each x ∈ E+ put

[0, x] = {y ∈ E : 0 ≤ y ≤ x} and
[
|0, x
]
| =
{
x′′ ∈ E′′ : 0 ≤ x′′ ≤ x

}
.

Then the interval [0, x] is σ(E′′, E′)-dense in the σ(E′′, E′)-compact interval[
|0, x
]
|.

Proof. Clearly,
[
|0, x
]
| is closed and bounded for σ(E′′, E′), and hence it

is σ(E′′, E′)-compact. To see that [0, x] is σ(E′′, E′)-dense in
[
|0, x
]
|, let A

be the σ(E′′, E′)-closure of [0, x] in E′′. Clearly, A is a convex σ(E′′, E′)-
compact subset of

[
|0, x
]
|. If there exists some x′′ ∈

[
|0, x
]
| with x′′ /∈ A, then
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by Theorems 3.12 and 3.16 there exist x′ ∈ E′ and c ∈ R satisfying x′(y) ≤ c
for all y ∈ [0, x] and x′′(x′) > c. In particular, from Theorem 1.18 it follows
that

x′′(x′) ≤ x′′((x′)+
)
≤ (x′)+(x) = sup

{
x′(y) : y ∈ [0, x]

}
≤ c ,

which is impossible. Thus, [0, x] is σ(E′′, E′)-dense in
[
|0, x
]
|.

The consistency of |σ|(E′, E) is characterized as follows.

Theorem 3.57. If 〈E, E′〉 is a Riesz dual system, then the following state-
ments are equivalent.

(1) |σ|(E′, E) is consistent with 〈E, E′〉.
(2) E is Dedekind complete and σ(E, E′) is order continuous.

(3) E is an ideal of (E′)∼n .

(4) E is an ideal of E′′.

(5) Each order interval of E is σ(E, E′)-compact.

Proof. (1) =⇒ (2) Consider E as a Riesz subspace of (E′)∼, and note that
〈E′, (E′)∼〉 is a Riesz dual system. By Theorem 3.50 the topological dual of(
E′, |σ|(E′, E)

)
is the ideal generated by E in (E′)∼, which by our hypothesis

must coincide with E, and the desired conclusion follows.

(2) =⇒ (3) By Theorem 3.54, E is an order dense Riesz subspace of
(E′)∼n . Thus, by Theorem 2.31, E is an ideal of (E′)∼n .

(3) =⇒ (4) Recall that E′′ is the topological dual of
(
E′, β(E′, E)

)
. Since

β(E′, E) is a locally convex-solid topology, E′′ is an ideal of (E′)∼, and from
this we see that E is an ideal of E′′.

(4) =⇒ (1) Clearly, E is also an ideal of (E′)∼, and the conclusion follows
from Theorem 3.50 applied to the Riesz dual system 〈E′, (E′)∼〉.

(4) ⇐⇒ (5) We use the notation of Lemma 3.56. Note that E is an
ideal of E′′ if and only if [0, x] =

[
|0, x
]
| holds for each x ∈ E+. On the other

hand, since the topologies σ(E′′, E′) and σ(E, E′) agree on E, it follows from
Lemma 3.56 that this is the case if and only if every order interval of E is
σ(E, E′)-compact.

For Banach lattices statement (5) of the preceding theorem is attributed
by M. Nakamura [146, p. 106] to T. Ogasawara.

The Riesz dual systems have an asymmetry reminiscent to that of the
dual systems 〈X, X ′〉 with X a Banach space. In the Banach space case, the
strong topology β(X ′, X) is not in general consistent with 〈X, X ′〉. In a Riesz
dual system 〈E, E′〉, the locally convex-solid topology |σ|(E′, E) is not in
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general consistent with 〈E, E′〉. However, if a Riesz dual system satisfies any
one of the conditions of Theorem 3.57, then a complete symmetry occurs.

Consider a Riesz dual system 〈E, E′〉. We have already seen that the
polars of solid sets are likewise solid sets. In case A is an ideal of E, then it
is not difficult to see that

Ao =
{
x′ ∈ E′ : x′(x) = 0 for all x ∈ A

}
.

From this, it follows that Ao is a band of E′. Similarly, if A is an ideal of
E′, then (by Theorem 1.23) we see that

Ao =
{
x ∈ E : x′(x) = 0 for all x′ ∈ A

}
,

and so Ao is an ideal of E.
The next two results deal with order projections in Riesz dual systems.

Theorem 3.58. Let 〈E, E′〉 be a Riesz dual system. If A and B are two
bands of E satisfying E = A ⊕ B, then E′ = Ao ⊕ Bo holds.

In particular, if P denotes the order projection of E onto A, then P is
weakly continuous and its adjoint P ′ is the order projection of E′ onto Bo.

Proof. We have mentioned before that both Ao and Bo are bands, and
clearly Ao ∩ Bo = {0}. If P denotes the order projection of E onto A,
then x′ ◦ P ∈ Bo and x′ − x′ ◦ P ∈ Ao hold for each x′ ∈ E′. From
x′ = (x′ − x′ ◦ P ) + x′ ◦ P , we see that E′ = Ao ⊕ Bo.

Now from E = A⊕B and E′ = Ao ⊕Bo, it is easy to see that P ′x′ = 0
for all x′ ∈ Ao and P ′x′ = x′ for all x′ ∈ Bo. Therefore, P ′ is the order
projection of E′ onto the band Bo.

The following is a “dual” of the preceding result.

Theorem 3.59. Let 〈E, E′〉 be a Riesz dual system with E Dedekind com-
plete and σ(E, E′) order continuous. If A and B are two bands of E′ satis-
fying E′ = A ⊕ B, then E = Ao ⊕ Bo.

In particular, if P is an order projection on E′, then there exists an
order projection Q on E such that Q′ = P .

Proof. By Theorem 3.57 we know that E is an ideal of (E′)∼, and so 〈E′, E〉
is a Riesz dual system. From Theorem 3.58 we see that E = Ao⊕Bo. Thus,
if P is the order projection of E′ onto A and Q is the order projection of E
onto Bo, then Q′ = P holds.

We continue with an important density property of E in (E′)∼n .

Theorem 3.60. If 〈E, E′〉 is a Riesz dual system, then the Riesz space E
is |σ|

(
(E′)∼n , E′)-dense in (E′)∼n .
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Proof. Note that 〈E′, (E′)∼n 〉 is a Riesz dual system. Since E′ is Dedekind
complete and σ

(
E′, (E′)∼n

)
is order continuous, it follows from Theorem 3.57

that |σ|
(
(E′)∼n , E′) is consistent with

〈
E′, (E′)∼n

〉
.

Denote by E the |σ|
(
(E′)∼n , E′)-closure of E in (E′)∼n . If E �= (E′)∼n

holds, then according to Theorems 3.7 and 3.16 there exists some nonzero
x′ ∈ E′ satisfying x(x′) = x′(x) = 0 for all x ∈ E. However, the latter
means that x′ = 0, which is a contradiction. Hence, E = (E′)∼n holds, as
asserted.

If an order interval [0, x] is compact for some locally convex topology,
then by the classical Krein–Milman Theorem 3.14 we know that the order
interval [0, x] is the closed convex hull of its extreme points. Remarkably, if
τ is a locally convex solid topology on a Riesz space E with the principal
projection property, then (although the order intervals of E need not be
compact) for every x ∈ E+ the order interval [0, x] is always the τ -closed
convex hull of its extreme points. This useful result (which is essentially due
to H. H. Schaefer [174, p. 142]) is stated next.

Theorem 3.61 (Schaefer). Let (E, τ) be a locally convex-solid Riesz space
with the principal projection property. Then for each x ∈ E+ the order inter-
val [0, x] is the τ -closed convex hull of its extreme points—or, equivalently,
[0, x] is the τ -closed convex hull of the components of x.

Proof. Let x ∈ E+ be fixed. By Theorem 1.49 we know that the extreme
points of [0, x] are precisely the components of x. Let A be the τ -closed con-
vex hull of the extreme points of [0, x], and assume by way of contradiction
that A �= [0, x].

Pick 0 < z < x with z /∈ A. Since {z} is convex and τ -compact, A is
convex and τ -closed, and {z} ∩ A = �©, it follows from Theorem 3.12 that
there exist c ∈ R and f ∈ E′ such that f(y) ≤ c holds for all y ∈ A and
f(z) > c. Now by Theorem 1.50 we have

f+(x) = sup
{
f(y) : y ∧ (x − y) = 0

}
,

and so, since the components of x belong to A, we infer that f+(x) ≤ c. In
particular, it follows that

c < f(z) ≤ f+(z) ≤ f+(x) ≤ c ,

which is absurd. So, A = [0, x] must be true and the proof is finished.

Exercises

1. Show that the convex hull of a solid set is likewise a solid set. Is the solid
hull of a convex set necessarily convex? [Hint : Use Theorem 1.13. ]
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2. Let E be a Riesz space such that E∼ separates its points. Then show
that for an ideal E′ of E∼ the following statements are equivalent.
(a) 〈E,E′〉 is a Riesz dual system.
(b) E′ is σ(E∼, E)-dense in E∼.
(c) If x ∈ E satisfies x′(x) ≥ 0 for all 0 ≤ x′ ∈ E′, then x ≥ 0.

3. If 〈E,E′〉 is a Riesz dual system, then show that E+ is σ(E,E′)-closed
and E′

+ is σ(E′, E)-closed.
4. Let 〈E,E′〉 be a Riesz dual system with E Dedekind complete and with

σ(E,E′) order continuous. Show that the order intervals of E are com-
plete with respect to any consistent locally convex-solid topology on E.

5. Show that an order continuous locally convex-solid topology on a Riesz
space E has a unique order continuous locally convex-solid extension to
the Dedekind completion of E.

6. (Andô) Show that a locally convex-solid topology τ on a Riesz space is
order continuous if and only if every τ -closed ideal is a band.

7. Let 〈E,E′〉 be a Riesz dual system. Show that σ(E,E′) is order contin-
uous if and only if Nf is a band for each f ∈ E′.

8. Let 〈E,E′〉 and 〈F, F ′〉 be two Riesz dual systems, and let T : E → F
be a weakly continuous operator. Then show the following:
(a) T [0, x] is |σ|(F, F ′)-totally bounded for each x ∈ E+ if and only if

T ′[0, x′] is |σ|(E′, E)-totally bounded for each x′ ∈ F ′
+.

(b) If τ is a consistent locally convex-solid topology on F , then T [0, x] is
τ -totally bounded for each x ∈ E+ if and only if T ′(A) is |σ|(E′, E)-
totally bounded for every τ -equicontinuous subset A of F ′.

[Hint : For (a) use Theorems 3.27 and 3.55, and for (b) use Theorems 3.22,
3.27, and 3.55. ]

9. Let 〈E,E′〉 be a Riesz dual system and let A be a projection band of E.
Show that (Ao)d = (Ad)o.

10. Let 〈E,E′〉 be a Riesz dual system, and let τ be a locally convex topology
on E consistent with 〈E,E′〉. Show that τ is locally convex-solid if and
only if the solid hull of every τ -equicontinuous subset of E′ is also τ -
equicontinuous.

11. Let 〈E,E′〉 and 〈F, F ′〉 be two Riesz dual systems. If T : E → F is a
weakly continuous positive operator, then show that

T :
(
E, |σ|(E,E′)

)
→
(
F, |σ|(F, F ′)

)
is continuous.

12. Let (E, τ) be a locally convex-solid Riesz space, and let A be a τ -closed
ideal of E. Then show the following:
(a) The quotient Riesz space E/A with the quotient topology (see Ex-

ercise 12 of section 3.1) is a locally convex-solid Riesz space.
(b) If τ is order continuous, then the quotient topology is likewise order

continuous.



Chapter 4

Banach Lattices

It is well known that most classical Banach spaces are, in fact, Banach lat-
tices on which positive operators appear naturally. This chapter is devoted
to the study of Banach lattices with special emphasis on Banach lattices
with order continuous norms. The classes of AL- and AM -spaces are inves-
tigated thoroughly. In addition, some interesting connections between weak
compactness and the lattice structure of a Banach lattice are presented. One
section deals exclusively with embeddings of the classical sequence spaces
into Banach spaces. As we shall see, a number of important properties of
Banach spaces and Banach lattices are reflected upon the embeddability (or
nonembeddability) of c0, �1, and �∞ into the spaces. Also, Banach lattices
of operators are considered and some useful approximation properties of
positive operators are obtained.

4.1. Banach Lattices with Order Continuous Norms

Recall that a norm ‖ · ‖ on a Riesz space is said to be a lattice norm
whenever |x| ≤ |y| implies ‖x‖ ≤ ‖y‖. A Riesz space equipped with a lattice
norm is known as a normed Riesz space. If a normed Riesz space is
also norm complete, then it is referred to as a Banach lattice. Clearly,
the normed Riesz spaces are special examples of locally convex-solid Riesz
spaces.

It should be obvious that in a normed Riesz space ‖x‖ =
∥∥|x|∥∥ holds for

all x. Also, in view of Theorem 1.9, in a normed Riesz space the following
inequalities hold:

‖x+ − y+‖ ≤ ‖x− y‖ and
∥∥|x| − |y|

∥∥ ≤ ‖x− y‖ .
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In particular, these inequalities show that the lattice operations of a normed
Riesz space are uniformly continuous functions.

Theorem 4.1. The norm dual of a normed Riesz space is a Banach lattice.

Proof. Let E be a normed Riesz space. By Theorem 3.49 we know that E′

is an ideal of E∼, and hence E′ is a Riesz space in its own right. Since E′ is
also a Banach space, it remains to be shown that the norm of E′ is a lattice
norm. To this end, let |x′| ≤ |y′| in E′. From the inequalities∣∣x′(x)

∣∣ ≤ |x′|(|x|) ≤ |y′|(|x|)
= sup

{
|y′(y)| : |y| ≤ |x|

}
≤ ‖y′‖·‖x‖ ,

it easily follows that ‖x′‖ ≤ ‖y′‖, and the proof is finished.

Let E be a normed Riesz space. If 0 ≤ x′ ∈ E′ holds, then from the
inequality |x′(x)| ≤ x′(|x|), it is easy to see that

‖x′‖ = sup
{
x′(x) : 0 ≤ x ∈ E and ‖x‖ = 1

}
.

Similarly, if x ∈ E+, then

‖x‖ = sup
{
x′(x) : 0 ≤ x′ ∈ E′ and ‖x′‖ = 1

}
.

In addition, since E′ is an ideal of E∼ and separates the points of E, it
follows that the natural embedding of E into E′′ is a lattice isometry; see
Theorem 1.69 and the discussion after it. In other words, E is a Riesz
subspace of the Banach lattice E′′. In particular, the norm closure of E in
E′′ is the norm completion of E. On the other hand, the continuity of the
lattice operations imply that the norm closure of E in E′′ is also a Riesz
subspace, and so we have proven the following result.

Theorem 4.2. The norm completion of a normed Riesz space E is a Banach
lattice including E as a Riesz subspace.

Positive operators between Banach lattices are necessarily continuous.
This important result was first established for integral operators by S. Ba-
nach [30]. For positive linear functionals, the next theorem appeared in the
first edition of G. Birkhoff’s book [37], and was re-proved my M. G. Krein
and M. A. Rutman [103]. In a more general setting the result was proven
by I. A. Bahtin, M. A. Krasnoselskii, and V. Y. Stecenko [29].

Theorem 4.3. Every positive operator from a Banach lattice to a normed
Riesz space is continuous.

Proof. Let T : E → F be a positive operator from a Banach lattice E to
a normed Riesz space. Assume by way of contradiction that T is not norm
bounded. Then there exists a sequence {xn} of E satisfying ‖xn‖ = 1 and
‖Txn‖ ≥ n3 for each n. In view of |Txn| ≤ T |xn|, we can assume that xn ≥ 0
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holds for each n. From
∑∞

n=1
‖xn‖
n2 < ∞ and the norm completeness of E, it

follows that the series
∑∞

n=1
xn
n2 is norm convergent in E. Let x =

∑∞
n=1

xn
n2 .

Clearly, 0 ≤ xn
n2 ≤ x holds for all n, and so

n ≤
∥∥T (xn

n2

)∥∥ ≤ ‖Tx‖ < ∞
also holds for each n, which is impossible. Thus, T must be normed bounded
and hence continuous.

A striking consequence of the preceding result is that a given Riesz space
admits essentially at most one lattice norm under which it is a Banach
lattice. This is due to C. Goffman [70].1

Corollary 4.4 (Goffman). All lattice norms that a make a Riesz space a
Banach lattice are equivalent.

Proof. Let a Riesz space E be a Banach lattice under the two lattice norms
‖ · ‖1 and ‖ · ‖2. Then, according to Theorem 4.3, the identity operator
I : (E, ‖ · ‖1) → (E, ‖ · ‖2) is a homeomorphism, and this guarantees that the
norms ‖ · ‖1 and ‖ · ‖2 are equivalent.

Since every order bounded linear functional on a Riesz space can be writ-
ten as a difference of two positive linear functionals, the following result of
G. Birkhoff [37, 1940 Edition] should also be immediate from Theorem 4.3.

Corollary 4.5 (Garrett Birkhoff). The norm dual of a Banach lattice E
coincides with its order dual, i.e., E′ = E∼.

Now let {Xn} be a sequence of Banach spaces. Then recall that the
Lp-sum of the sequence {Xn} (1 ≤ p < ∞) is the Banach space

(X1 ⊕ X2 ⊕ · · · )p

:=
{

x = (x1, x2, . . .) : xn ∈ Xn and ‖x‖ :=
[ ∞∑
n=1

‖xn‖p
] 1

p
< ∞
}

.

As usual we also define

(X1 ⊕ X2 ⊕ · · · )∞ :=
{
x=(x1, x2, . . .) : xn∈Xn and ‖x‖ :=sup{‖xn‖}<∞

}
and

(X1 ⊕ X2 ⊕ · · · )0 :=
{
x = (x1, x2, . . .) : xn ∈ Xn and lim

n→∞
‖xn‖ = 0

}
.

If each Xn is a Banach lattice, then clearly under the pointwise ordering
each (X1 ⊕ X2 ⊕ · · · )p is likewise a Banach lattice.

1Recall that two norms ‖ · ‖1 and ‖ · ‖2 on a vector space X are said to be
equivalent if there exist constants K,M > 0 satisfying K‖x‖1 ≤ ‖x‖2 ≤ M‖x‖1

for all x ∈ X.
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Theorem 4.6. Let {Xn} be a sequence of Banach spaces, and assume that
1 < p, q < ∞ satisfy 1

p + 1
q = 1. Then we have

(
X1 ⊕ X2 ⊕ · · ·

)′
p

=
(
X ′

1 ⊕ X ′
2 ⊕ · · ·

)
q
,

where the equality holds subject to the duality

〈x, x′〉 =
∞∑

n=1

x′
n(xn)

for x=(x1, x2, . . .) ∈
(
X1 ⊕ X2 ⊕ · · ·

)
p

and x′=(x′
1, x

′
2, . . .) ∈

(
X ′

1 ⊕ X ′
2 ⊕ · · ·

)
q
.

Similarly, we have
(
X1 ⊕ X2 ⊕ · · ·

)′
1

=
(
X ′

1 ⊕ X ′
2 ⊕ · · ·

)
∞

and (
X1 ⊕ X2 ⊕ · · ·

)′
0

=
(
X ′

1 ⊕ X ′
2 ⊕ · · ·

)
1
.

Proof. We shall establish the result when 1 < p, q < ∞ satisfy 1
p + 1

q = 1,
and leave the other cases for the reader. To this end, it is enough to show
and the mapping x′ �→ φx′ where φx′(x1, x2, . . .) =

∑∞
n=1 x′

n(xn), is an
isometry from

(
X ′

1 ⊕ X ′
2 ⊕ · · ·

)
q

onto
(
X1 ⊕ X2 ⊕ · · ·

)′
p
.

Fix x′ = (x′
1, x

′
2, . . .) ∈

(
X ′

1 ⊕X ′
2 ⊕ · · ·

)
q
. Then for each x = (x1, x2, . . .)

in
(
X1 ⊕ X2 ⊕ · · ·

)
p

we have |x′
n(xn)| ≤ ‖x′

n‖ · ‖xn‖, and so

∣∣∣
k∑

n=1

x′
n(xn)

∣∣∣ ≤
k∑

n=1

‖x′
n‖ · ‖xn‖

≤
[ ∞∑
n=1

‖x′
n‖q
] 1

q ·
[ ∞∑
n=1

‖xn‖p
] 1

p

= ‖x′‖q ·‖x‖p

holds for all k. Thus, the formula φx′(x) =
∑∞

n=1 x′
n(xn) defines a continu-

ous linear functional on (X1 ⊕ X2 ⊕ · · · )p satisfying∥∥φx′
∥∥ ≤ ∥∥x′∥∥

q
(�)

for all x′ ∈
(
X ′

1 ⊕ X ′
2 ⊕ · · · )q. Clearly, x′ �→ φx′ is a linear operator.

Now let φ ∈
(
X1 ⊕ X2 ⊕ · · ·

)′
p
. If x′

n : Xn → R is defined by

x′
n(xn) = φ(0, . . . , 0, xn, 0, 0, . . .) ,

then x′
n ∈ X ′

n, and moreover φ(x1, x2, . . .) =
∑∞

n=1 x′
n(xn) holds for all

(x1, x2, . . .) ∈ (X1 ⊕ X2 ⊕ · · · )p. Fix 0 < ε < 1. For each n pick some
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yn ∈ Xn with ‖yn‖ = 1 and x′
n(yn) ≥ ε‖x′

n‖. Put zn = ‖x′
n‖q−1yn, and note

that for each k we have

ε
k∑

n=1

∥∥x′
n

∥∥q =
k∑

n=1

∥∥x′
n

∥∥q−1
ε
∥∥x′

n

∥∥ ≤
k∑

n=1

∥∥x′
n

∥∥q−1
x′

n(yn)

= φ(z1, . . . , zk, 0, 0, . . .) ≤ ‖φ‖ ·
[ k∑
n=1

‖zn‖p
] 1

p

= ‖φ‖ ·
[ k∑
n=1

∥∥x′
n

∥∥q] 1
p

.

Therefore, ε
(∑k

n=1

∥∥x′
n

∥∥q) 1
q ≤ ‖φ‖ holds for all k, and each 0 < ε < 1. This

implies that x′ = (x′
1, x

′
2, . . .) ∈

(
X ′

1⊕X ′
2⊕· · ·

)
q
, φ = φx′ , and

∥∥x′∥∥
q
≤ ‖φx′‖.

By (�) we see that ‖φx′‖ = ‖x′‖q, and thus x′ �→ φx′ is an onto linear
isometry. Finally, it should be noted that if each Xn is a Banach lattice,
then x′ �→ φx′ is an onto lattice isometry.

We now turn our attention to Banach lattices with order continuous
norms.

Definition 4.7. A lattice seminorm p on a Riesz space is said to be order
continuous whenever xα ↓ 0 implies p(xα) ↓ 0.

If the above condition holds for sequences, i.e., xn ↓ 0 implies p(xn) ↓ 0,
then p is said to be σ-order continuous.

Clearly, a lattice seminorm p is order continuous if and only if A ↓ 0
implies

{
p(a) : a ∈ A

}
↓ 0. A lattice norm is, of course, order continuous

if and only if it generates an order continuous locally convex-solid topology.
In addition, note that a lattice seminorm p is order continuous if and only
if 0 ≤ xα ↑ x implies p(x−xα) ↓ 0.

To characterize Banach lattices with order continuous norms, we need
the following simple result.

Lemma 4.8. If 0 ≤ xα ↑≤ x holds in an Archimedean Riesz space E,
then the set D = {y ∈ E : xα ≤ y for all α} is directed downward and
y−xα ↓y,α 0.

Proof. Clearly, D is directed downward. Let 0 ≤ u ≤ y−xα holds for all
α and all y ∈ D. Then xα ≤ y − u also holds for all α, and so y−u ∈ D for
all y ∈ D. By induction, y − nu ∈ D for all n and all y ∈ D. In particular,
we have 0 ≤ nu ≤ x for each n. Since E is Archimedean, it follows that
u = 0, and so y−xα ↓y,α 0.
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A few elementary characterizations of Banach lattices with order con-
tinuous norms are included in the next theorem. They are essentially due
to H. Nakano [152, p. 321].

Theorem 4.9 (Nakano). For a Banach lattice E the following statements
are equivalent.

(1) E has order continuous norm.
(2) If 0 ≤ xn ↑≤ x holds in E, then {xn} is a norm Cauchy sequence.
(3) E is Dedekind σ-complete and xn ↓ 0 in E implies ‖xn‖ ↓ 0.
(4) E is an ideal of E′′.
(5) Each order interval of E is weakly compact.

Proof. (1) =⇒ (2) Let 0 ≤ xα ↑≤ x hold in E, and let ε > 0. By Lemma 4.8
there exists a net {yλ} ⊆ E with yλ −xα ↓ 0. Thus, there exists λ0 and
α0 such that ‖yλ −xα‖ < ε holds for all λ � λ0 and α � α0. From the
inequality

‖xα −xβ‖ ≤ ‖xα − yλ0‖ + ‖xβ − yλ0‖ ,

we see that ‖xα −xβ‖ < 2ε holds for all α, β � α0. Hence, {xα} is a norm
Cauchy net. (If y is its norm limit, then xα ↑ y, and so E is also Dedekind
complete.)

(2) =⇒ (3) It follows immediately from part (2) of Theorem 3.46.

(3) =⇒ (1) Let xα ↓ 0. If {xα} is not a norm Cauchy net, then there exist
some ε > 0 and a sequence {αn} of indices with αn ↑, and ‖xαn−xαn+1‖>ε
for all n. Since E is Dedekind σ-complete, there exists some x ∈ E with
xαn ↓ x. Now from our hypothesis, we see that {xαn} is a norm Cauchy se-
quence, which contradicts

∥∥xαn −xαn+1

∥∥ > ε. Thus, {xα} is a norm Cauchy
net, and so {xα} is norm convergent to some y ∈ E. By part (2) of Theo-
rem 3.46 we see that y = 0, and so ‖xα‖ ↓ 0 holds.

The other equivalences easily follow from Theorems 3.57 and 3.54.

Corollary 4.10. Every Banach lattice with order continuous norm is De-
dekind complete.

When does the norm completion of a normed Riesz space have order con-
tinuous norm? The next theorem of W. A. J. Luxemburg [125, Note XVI]
provides the answer.

Theorem 4.11 (Luxemburg). For a normed Riesz space E the following
statements are equivalent.

(1) The norm completion of E has order continuous norm.
(2) If 0 ≤ xn ↑≤ x holds in E, then {xn} is a norm Cauchy sequence.
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Proof. (1) =⇒ (2) This follows immediately from Theorem 4.9.

(2) =⇒ (1) Let 0 ≤ xn ↓ hold in the norm completion of E. By state-
ment (2) of Theorem 4.9, it is enough to show that {xn} is a norm Cauchy
sequence. To this end, let ε > 0. For each n pick some yn ∈ E+ with
‖xn − yn‖ < ε2−n. Put zn =

∧n
i=1 yi, and note that 0 ≤ zn ↓ holds in E.

Now, by our hypothesis, there exists some k with ‖zn − zm‖ < ε for all
n,m ≥ k. From

xn − zn =
n∨

i=1

(xn − yi) ≤
n∨

i=1

(xi − yi) ≤
n∑

i=1

|xi − yi| ,

and

−(xn − zn) = zn − xn =
n∧

i=1

(yi − xn) ≤ yn − xn ≤
n∑

i=1

|xi − yi| ,

we see that

|xn − zn| ≤
n∑

i=1

|xi − yi| .

Therefore, ‖xn − zn‖ ≤
∑n

i=1 ‖xi − yi‖ <
∑n

i=1 ε2−i < ε holds for all n. In
particular, for n,m ≥ k we have

‖xn −xm‖ ≤ ‖xn − zn‖ + ‖zn − zm‖ + ‖zm −xm‖ < ε + ε + ε = 3ε ,

and so {xn} is a norm Cauchy sequence, as desired.

Examples of Banach lattices with order continuous norms are provided
by the classical Lp(µ)-spaces, where 1 ≤ p < ∞. From statement (4) of
Theorem 4.9, it is easy to see that every reflexive Banach lattice has order
continuous norm. The Banach lattices C[0, 1], L∞[0, 1], and �∞ (all with the
sup norm) are examples of Banach lattices without order continuous norms.

Recall that a sequence {xn} in a Riesz space is said to be disjoint
whenever |xn| ∧ |xm| = 0 holds for n �= m. The next theorem of the authors
describes an important approximation property of increasing order bounded
sequences in terms of disjoint sequences.

Theorem 4.12 (Aliprantis–Burkinshaw). If 0 ≤ xn ↑≤ x holds in a Riesz
space, then for each k ∈ N there exist disjoint sequences {y1

n}, . . . , {yk
n} of

[0, x] such that for each n we have

y1
n + · · · + yk

n ≤ xn+1 −xn ≤ y1
n + · · · + yk

n + 2
k+3x .

Proof. The proof uses the k-disjointness technique introduced by D. H. Frem-
lin [64]. Start by saying that a sequence {un} in a Riesz space is k-disjoint
whenever for every set I of k natural numbers, we have inf

{
|ui| : i ∈ I

}
= 0.

In this terminology, a disjoint sequence is a 2-disjoint sequence.
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Now let 0 ≤ xn ↑≤ x hold in a Riesz space. The proof will be based
upon two steps.

Step 1: For each k there exists a (k +1)-disjoint sequence {un} of [0, x]
satisfying un ≤ xn+1 −xn ≤ un + 1

k+1x for all n.

To see this, put un =
(
xn+1 − xn − 1

k+1x
)+. Clearly,

un ≤ xn+1 − xn = un + (xn+1 − xn) ∧ 1
k+1x ≤ un + 1

k+1x

holds for all n, and we claim that {un} is a (k + 1)-disjoint sequence. In-
deed, if I is an arbitrary set of k + 1 natural numbers, then the vector
u = inf

{
ui : i ∈ I

}
satisfies

0 = u ∧
∑
i∈I

(
xi+1 − xi − 1

k+1x
)− = u ∧

∑
i∈I

(
1

k+1x + xi − xi+1 + ui

)

= u ∧
[
x −
∑
i∈I

(xi+1 − xi) +
∑
i∈I

ui

]

≥ u ∧
∑
i∈I

ui = u ≥ 0 ,

so that u = 0. Therefore, {un} is a (k + 1)-disjoint sequence.

Step 2: If {un} ⊆ [0, x] is a (k + 1)-disjoint sequence (k > 1) and 0 < ε < 1,
then there exist a k-disjoint sequence {wn} ⊆ [0, x] and a disjoint
sequence {yn} ⊆ [0, x] such that for each n we have

yn + wn ≤ un ≤ yn + wn + εx .

To see this, put u0 = 0 and yn =
(
un − 1

ε

∑n−1
i=0 ui − εx

)+ for all n ≥ 1.
Then for m > n ≥ 1 the inequalities

0 ≤ εym =
[
εun −

m−1∑
i=0

ui − ε2x
]+

≤
[
εx −

n−1∑
i=0

ui − un

]+

≤
[
εx + 1

ε

n−1∑
i=0

ui − un

]+
=
[
un − 1

ε

n−1∑
i=0

ui − εx
]+

⊥ yn

imply ym ∧ yn = 0, and so {yn} is a disjoint sequence.

Next, for each n = 1, 2, . . . let wn = un ∧
(

1
ε

∑n−1
i=0 ui

)
. We claim that

{wn} is a k-disjoint sequence. To see this, let 1 ≤ n1 < · · · < nk, and note
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that

0 ≤
k∧

i=1

wni ≤ un1 ∧ · · · ∧ unk
∧
[

1
ε

n1−1∑
i=0

ui

]

≤ 1
ε

n1−1∑
i=0

un1 ∧ · · · ∧ unk
∧ ui = 0 ,

where each term of the last sum is zero by virtue of the (k + 1)-disjointness
of {un}. Now note that

yn + wn ≤ un = yn + un ∧
[

1
ε

n−1∑
i=0

ui + εx
]
≤ yn + wn + εx

holds for all n, and this completes the proof of Step 2.
Now let k ≥ 1 be fixed, and put ε = 1

(k+1)(k+3) . By Step 1 there exists
a (k + 1)-disjoint sequence {u1

n} of [0, x] satisfying

u1
n ≤ xn+1 − xn ≤ u1

n + 1
k+1x

for all n. If k = 1, then {u1
n} is a disjoint sequence, and the proof of the

theorem is finished. If k > 1 holds, then apply Step 2 to {u1
n} to get the

k-disjoint sequence {u2
n} of [0, x] and the disjoint sequence {y1

n} of [0, x]
satisfying

y1
n + u2

n ≤ xn+1 − xn ≤ y1
n + u2

n + εx + 1
k+1x

for all n. Repeat applying Step 2 until after (k− 1)-times we have the
inequalities

y1
n + · · · + yk

n ≤ xn+1 − xn ≤ y1
n + · · · + yk

n + (k− 1)εx + 1
k+1x

for all n ≥ 1, where each {yi
n} is a disjoint sequence of [0, x]. To complete

the proof, note that (k− 1)ε + 1
k+1 = 2

k+3 holds.

As a first application of the preceding theorem, we have the following
result of D. H. Fremlin [64, p. 56].

Theorem 4.13 (Fremlin). For a lattice seminorm p on a Riesz space E
and a vector x ∈ E+, the following statements are equivalent:

(1) 0 ≤ xn ↑≤ x in E implies that {xn} is a p-Cauchy sequence.
(2) If {xn} is a disjoint sequence of [0, x], then lim p(xn) = 0.

Proof. (1) =⇒ (2) If {xn} is a disjoint sequence of [0, x], then

0 ≤ yn =
n∑

i=1

xi =
n∨

i=1

xi ↑≤ x

holds, and so p(xn) = p(yn − yn−1) → 0.
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(2) =⇒ (1) Assume 0 ≤ xn ↑≤ x in E. If {xn} is not p-Cauchy sequence,
then passing to a subsequence, we can assume that there exist some ε > 0
satisfying p(xn+1 − xn) > 2ε for all n. Fix some positive integer k with

2
k+3p(x) < ε, and then use Theorem 4.12 to select the disjoint sequences
{y1

n}, . . . , {yk
n} of [0, x] such that

0 ≤ xn+1 − xn ≤ y1
n + · · · + yk

n + 2
k+3x

for all n. Now by our hypothesis we have limn→∞ p(yi
n) = 0 for all i, and thus

p(xn+1 − xn) < 2ε must hold for all n sufficiently large, which is impossible.
Hence, {xn} is a p-Cauchy sequence, and the proof is finished.

Taking into account Theorem 4.9, an easy application of Theorem 4.13
yields the following important characterization (due to D. H. Fremlin [64,
p. 56] and P. Meyer-Nieberg [141]) of the order continuity of the norm in a
Banach lattice in terms of disjoint sequences.

Theorem 4.14 (Fremlin–Meyer-Nieberg). A Banach lattice has order con-
tinuous norm if and only if every order bounded disjoint sequence is norm
convergent to zero.

A positive linear functional f on a Riesz space is said to be strictly
positive whenever x > 0 implies f(x) > 0. Riesz spaces admitting strictly
positive linear functionals are useful in many contexts, and they have been
studied by many authors. In [144] L. C. Moore, Jr., studied the existence
of strictly positive linear functionals in connection with strictly monotone
lattice norms.

A Banach lattice with order continuous norm and a weak order unit
always admits a strictly positive linear functional. The details are included
in the next theorem.

Theorem 4.15. If a Banach lattice E has order continuous norm, then
for each x > 0 there exists a positive linear functional on E that is strictly
positive on the order interval [0, x].

Proof. Let E be a Banach lattice with order continuous norm, and let
0 < x ∈ E. For each 0 < f ∈ E′, put Nf =

{
y ∈ E : f(|y|) = 0

}
and

Cf = Nd
f . Since f is order continuous, Nf is a band of E, and moreover f

is strictly positive on Cf .
Now put A =

⋃{
Cf : 0 < f ∈ E′}. Since 0 ≤ f ≤ g implies Cf ⊆ Cg, it

is easy to see that A is an ideal of E, and we claim that A is order dense in
E. To see this, let 0 ≤ y ∈ Ad. That is, y ⊥ Cf holds for all 0 < f ∈ E′, and
so y ∈ Cd

f = Ndd
f = Nf for all 0 < f ∈ E′. Therefore, f(y) = 0 holds for all

0 ≤ f ∈ E′, from which it follows that y = 0. Hence, Ad = {0}, and so by
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Theorem 1.36 the ideal A is order dense in E. Since E has order continuous
norm, this implies that A is also norm dense in E.

Next, we claim that A is, in fact, a norm closed ideal. To see this, pick
a sequence {yn} ⊆ A with lim ‖yn − y‖ = 0. Then for each n there exists
some 0 < fn ∈ E′ with ‖fn‖ = 1 and yn ∈ Cfn . Put f =

∑∞
n=1 2−nfn, and

note that 0 < f ∈ E′. Also, Nf ⊆ Nfn holds for all n. This implies that
Cfn ⊆ Cf for all n, and so {yn} ⊆ Cf . Since Cf is a band, it follows from
Theorem 3.46 that Cf is norm closed, and hence y ∈ Cf ⊆ A. Thus, A is
norm closed, and since A is norm dense in E, we see that A = E.

Finally, note that there exists some 0 < g ∈ E′ so that [0, x] ⊆ Cg holds.
Clearly, g is strictly positive on [0, x], and the proof is finished.

If f is a strictly positive linear functional on a normed Riesz space E,
then the formula p(x) = f(|x|) defines a lattice norm on E. A connection
between this norm and the original on E is described in the next result.

Lemma 4.16. Let E be a Banach lattice with order continuous norm, and
let 0 ≤ f ∈ E′ be strictly positive on an order interval [0, x]. Then for
each ε > 0 there exists some δ > 0 such that y ∈ [0, x] and f(y) < δ imply
‖y‖ < ε.

Proof. Assume by way of contradiction that the claim is false. Then there
exist some ε > 0 and a sequence {xn} ⊆ [0, x] satisfying f(xn) < 2−n and
‖xn‖ > ε for each n.

Now let yn =
∨∞

i=n xi. Clearly, {yn} ⊆ [0, x] and yn ↓ . Since f is order
continuous, it follows that

f(yn) ≤
∞∑

i=n

f(xi) ≤
∞∑

i=n

2−i = 21−n ,

and so lim f(yn) = 0. From this, and the strict positivity of f on [0, x], we
see that yn ↓ 0 must hold in E. On the other hand, ‖yn‖ ≥ ‖xn‖ > ε for each
n contradicts the order continuity of the norm, and the proof is finished.

In a Banach lattice with order continuous norm, there is an important
relationship between the norm and the absolute weak topologies.

Theorem 4.17. In a Banach lattice E with order continuous norm, the
norm topology and |σ|(E, E′) agree on each order interval of E.

In particular, in this case, |σ|(E, E′) and the norm topology have the
same order bounded totally bounded sets.

Proof. Since |σ|(E, E′) is coarser than the norm topology, we have only to
show that the norm topology is coarser than |σ|(E, E′) on the order intervals
of E.
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To this end, let V be an open ball with radius ε > 0 centered at some
u ∈ [−x, x]. By Theorem 4.15 there exists a positive linear functional f on
E that is strictly positive on [0, x], and by Lemma 4.16 there exists some
δ > 0 such that y ∈ [−x, x] and f(|y|) < δ imply ‖y‖ < ε. In particular, if
W =

{
z ∈ E : f(|z −u|) < δ

}
, then W is a |σ|(E, E′)-neighborhood of u,

and moreover [−x, x] ∩ W ⊆ [−x, x] ∩ V holds. This shows that the norm
topology is coarser that |σ|(E, E′) on [−x, x], as desired.

It is useful to know that in a Banach lattice E every order bounded
disjoint sequence converges weakly to zero. Indeed, if {xn} is a disjoint
sequence of E satisfying |xn| ≤ x for all n and f ∈ E′, then

k∑
n=1

|f(xn)| ≤
k∑

n=1

|f |(|xn|) = |f |
( k∑

n=1

|xn|
)

= |f |
( k∨

n=1

|xn|
)
≤ |f |(x)

holds for each k, and so
∑∞

n=1 f(xn) converges in R. In particular, we have
f(xn) → 0, and hence xn−→w 0 holds in E.

The next two theorems, due to P. G. Dodds and D. H. Fremlin [54],
characterize the order continuity of the norm in a Banach lattice in terms
of an approximation property.

Theorem 4.18 (Dodds–Fremlin). A Banach lattice E has order continuous
norm if and only if for each ε > 0 and each x ∈ E+ there exists some
0 ≤ y′ ∈ E′ satisfying (

|x′| − y′
)+(x) < ε

for all x′ ∈ E′ with ‖x′‖ ≤ 1.

Proof. Assume first that E has order continuous norm. Fix ε > 0 and
x ∈ E+. By Theorem 4.15 there exists some 0 ≤ y′ ∈ E′ that is strictly
positive on [0, x]. Also, by Lemma 4.16 there exists some δ > 0 such that
y ∈ [0, x] and y′(y) ≤ δ imply ‖y‖ < ε. Now let α = ‖x‖

δ , and let 0 ≤ y ≤ x
and 0 ≤ x′ ∈ U ′ be arbitrary. Then we claim that (x′−αy′)(y) < ε holds.
Indeed, if we have (x′−αy′)(y) ≥ ε, then we also have

‖x‖ ≥ ‖y‖ ≥ x′(y) ≥ ε + αy′(y) ≥ ε . (�)

In particular, it follows from αy′(y) ≤ ‖x‖ that y′(y) ≤ δ holds, and so
‖y‖ < ε. However, from (�) we see that ‖y‖ ≥ ε, a contradiction. Thus,
(x′−αy′)(y) < ε, and so(

x′−αy′
)+(x) = sup

{
(x′−αy′)(y) : 0 ≤ y ≤ x

}
≤ ε

holds for each 0 ≤ x′ ∈ U ′, as desired.
For the converse, assume that the condition is satisfied, and let {xn}

be a disjoint sequence satisfying 0 ≤ xn ≤ x for each n. By Theorem 4.14
it is enough to show that ‖xn‖ → 0. To this end, let ε > 0. Pick some
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0 ≤ y′ ∈ E′ such that (|x′| − y′)+(x) < ε holds for all x′ ∈ U ′. Now for each
0 ≤ x′ ∈ U ′ we have

x′(xn) = [x′ ∧ y′](xn) + (x′− y′)+(xn) ≤ y′(xn) + ε ,

and so
‖xn‖ = sup

{
x′(xn) : 0 ≤ x′ ∈ U ′} ≤ y′(xn) + ε .

Since xn−→w 0 is true, we see that lim sup ‖xn‖ ≤ ε holds for all ε > 0, and
thus ‖xn‖ → 0, as required.

The dual companion of the preceding theorem is the following.

Theorem 4.19 (Dodds–Fremlin). The norm dual E′ of a Banach lattice E
has order continuous norm if and only if for each ε > 0 and each 0 ≤ x′ ∈ E′

there exists some y ∈ E+ satisfying

x′((|x| − y)+
)

< ε

for all x ∈ E with ‖x‖ ≤ 1.

Proof. Assume that E′ has order continuous norm, and let ε > 0 and
0 ≤ x′ ∈ E′. By Theorem 4.18 there exists some 0 ≤ y′′ ∈ E′′ satisfying
(|x′′| − y′′)+(x′) < ε for all x′′ ∈ U ′′. Since E′′ = (E′)∼n holds, it follows from
Theorem 3.60 that E is |σ|(E′′, E′)-dense in E′′. In particular, there exists
some 0 ≤ y ∈ E satisfying |y′′− y|(x′) < ε. Therefore,

(
|x′′| − y

)+(x′) ≤
(
|x′′| − y′′

)+(x′) +
(
y′′− y

)+(x′) < ε + ε = 2ε

holds for all x′′ ∈ U ′′.
For the converse repeat the arguments of the second part of the proof

of Theorem 4.18.

We now turn our attention to the study of AL- and AM -spaces. These
spaces play a significant role in analysis.

Definition 4.20. A Banach lattice E is said to be:

(1) An abstract Lp-space for some 1 ≤ p < ∞, whenever its norm is
p-additive in the sense that

‖x + y‖p = ‖x‖p + ‖y‖p

holds for all x, y ∈ E+ with x ∧ y = 0.

(2) An abstract M-space, whenever its norm is an M -norm, i.e., if
x ∧ y = 0 in E implies

‖x ∨ y‖ = max
{
‖x‖, ‖y‖

}
.
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An abstract L1-space is referred to as an AL-space and an abstract
M -space is known as an AM -space. This standard terminology will be
employed here. The AL-spaces were introduced by G. Birkhoff [36], and the
AM -spaces were studied systematically for the first time by S. Kakutani [82]
(although they appeared in a fragmented way in the work of S. Banach [30]).

It should be noted that every abstract Lp-space E has order continuous
norm. Indeed, if {xn} ⊆ [0, x] is a disjoint sequence, then from the inequality

k∑
n=1

‖xn‖p =
∥∥∥

k∑
n=1

xn

∥∥∥p =
∥∥∥

k∨
n=1

xn

∥∥∥p ≤ ‖x‖p ,

it follows that
∑∞

n=1 ‖xn‖p < ∞, and so ‖xn‖ → 0 holds. By Theorem 4.14
the norm of E is order continuous.

The next result indicates the importance of AM -spaces.

Theorem 4.21. Let E be a Banach lattice, and let x ∈ E. Then the
principal ideal Ex generated by x in E under the norm ‖ · ‖∞, defined by

‖y‖∞ = inf
{
λ > 0: |y| ≤ λ|x|

}
, y ∈ Ex ,

is an AM -space, whose closed unit ball is the order interval [−|x|, |x|].

Proof. It is a routine matter to verify that ‖ · ‖∞ is a lattice norm on Ex

having [−|x|, |x|] as its closed unit ball.
Now assume that a sequence {xn} of Ex is ‖ · ‖∞-Cauchy. By passing to

a subsequence, we can assume that

|xn+p − xn| ≤ 2−n|x| (�)

holds for all n and p. Hence, {xn} is a norm Cauchy sequence of E. If y is
its norm limit, then by letting p → ∞ in (�), we see that |y − xn| ≤ 2−n|x|
holds for all n. The latter shows that y ∈ Ex and that ‖y − xn‖∞ → 0.
Therefore, (Ex, ‖ · ‖∞) is a Banach lattice.

Finally, let us show that ‖·‖∞ is an M -norm. To this end, let u∧v = 0 in
Ex. Put m = max

{
‖u‖∞, ‖v‖∞

}
, and note that m ≤ ‖u + v‖∞ = ‖u ∨ v‖∞

holds. On the other hand, the inequalities

0 ≤ u ∨ v ≤
[
‖u‖∞|x|

]
∨
[
‖v‖∞|x|

]
≤ m|x| ∨ m|x| = m|x|

show that ‖u ∨ v‖∞ ≤ m also holds, and the proof is finished.

Recall that a vector e > 0 in a Riesz space is said to be an order unit
whenever for each x there exists some λ > 0 with |x| ≤ λe. Now if a Banach
lattice E has an order unit e > 0, then Ee = E holds, and so by Corollary 4.4
the norm

‖x‖∞ = inf
{
λ > 0: |x| ≤ λe

}
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is equivalent to the original norm of E. In other words, if a Banach lattice
E has an order unit, then E can be renormed in such a way that it becomes
an AM -space having the order interval [−e, e] as its closed unit ball. In the
sequel, unless otherwise stated, by the phrase E is an AM-space with
unit we shall mean a Banach lattice whose norm is the ‖ ·‖∞ norm for some
order unit e > 0.

We continue our discussion with a useful approximation lemma.

Lemma 4.22. Let E be a Banach lattice. If x′ ∧ y′ = 0 holds in E′, then
for each ε > 0 there exist x, y ∈ U with x ∧ y = 0 and

‖x′‖ ≤ x′(x) + ε and ‖y′‖ ≤ y′(y) + ε .

Proof. Let x′, y′ ∈ E′ satisfy x′ ∧ y′ = 0, and let ε > 0. Pick u, v ∈ U with
‖x′‖ ≤ x′(u) + ε and ‖y′‖ ≤ y′(v) + ε. From [x′ ∧ y′](u) = 0, it follows that
there exist u1, u2 ∈ E+ with u = u1 + u2 and x′(u1) + y′(u2) < ε. Similarly,
there exists v1, v2 ∈ E+ with v = v1 + v2 and x′(v1) + y′(v2) < ε. Put
x = u2 − v1 ∧ u2 and y = v1 − v1 ∧ u2, and note that x, y ∈ U and x∧ y = 0
both hold. On the other hand, observe that

x′(x) = x′(u2) − x′(v1 ∧ u2) ≥ x′(u2) − ε = x′(u) − x′(u1) − ε

≥
(
‖x′‖ − ε

)
− ε − ε = ‖x′‖ − 3ε .

Similarly, y′(y) ≥ ‖y′‖ − 3ε holds, and the conclusion follows.

We now come to an important duality property between AL- and AM -
spaces.

Theorem 4.23. A Banach lattice E is an AL-space (resp. an AM -space)
if and only if E′ is an AM -space (resp. an AL-space).

Proof. We show first that if E is an AL-space, then E′ is an AM -space. To
this end, assume that E is an AL-space, and let x′ ∧ y′ = 0 in E′. Put m =
max
{
‖x′‖, ‖y′‖

}
, and note that m ≤ ‖x′ +y′‖ holds trivially. Now let ε > 0.

Choose some x ∈ E+ with ‖x‖ = 1 and ‖x′ + y′‖ ≤ (x′ + y′)(x) + ε. Since
[x′ ∧ y′](x) = 0, there exist u, v ∈ E+ with u + v = x and x′(u) + y′(v) < ε.
From (v − v ∧ u) ∧ (u − v ∧ u) = 0, 0 ≤ u + v − 2(u ∧ v) ≤ x, and the fact
that E is an AL-space, it follows that

‖v − v ∧ u‖ + ‖u − v ∧ u‖ = ‖u + v − 2(v ∧ u)‖ ≤ ‖x‖ ≤ 1 ,

and consequently

‖x′ + y′‖ ≤ x′(x) + y′(x) + ε = x′(v) + y′(u) + x′(u) + y′(v) + ε

≤ x′(v) + y′(u) + 2ε ≤ x′(v − v ∧ u) + y′(u − v ∧ u) + 3ε

≤ m
[
‖v − v ∧ u‖ + ‖u − v ∧ u‖

]
+ 3ε ≤ m + 3ε .
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Since ε > 0 is arbitrary, ‖x′ + y′‖ ≤ m also holds, and hence

‖x′ ∨ y′‖ = ‖x′ + y′‖ = max
{
‖x′‖, ‖y′‖

}
.

Next we show that the norm dual of an AM -space is an AL-space. To
this end, let E be an AM -space, let x′ ∧ y′ = 0 in E′, and let ε > 0. By
Lemma 4.22 there exist x, y ∈ U with

x ∧ y = 0 , ‖x′‖ ≤ x′(x) + ε , and ‖y′‖ ≤ y′(y) + ε .

Since E is an AM -space, we have ‖x + y‖ = max
{
‖x‖, ‖y‖

}
≤ 1, and so

‖x′‖ + ‖y′‖ ≤ x′(x + y) + y′(x + y) + 2ε ≤ ‖x′ + y′‖ · ‖x + y‖ + 2ε

≤ ‖x′ + y′‖ + 2ε ≤ ‖x′‖ + ‖y′‖ + 2ε

holds for all ε > 0. Therefore, ‖x′ + y′‖ = ‖x′‖ + ‖y′‖. Thus, E′ is an
AL-space.

To complete the proof, note that if E′ is an AL-space, then E′′ is an AM -
space, and hence the closed Riesz subspace E of E′′ is likewise an AM -space.
A similar observation is true when E′ is an AM -space.

It is a routine matter to verify that an AM -space E with unit e enjoys
also the following useful property: If x′ ∈ E′, then ‖x′‖ = |x′|(e). This
observation will be used in the proof of the next theorem which deals with
pointwise limits of sequences of linear functionals.

Theorem 4.24. Let E be a Banach lattice with order continuous norm, and
let x ∈ E+. Then for each norm bounded sequence {x′

n} in E′ there exist
a subsequence {y′n} of {x′

n} and some x′ ∈ E′ such that x′(y) = lim y′n(y)
holds for each 0 ≤ y ≤ x.

Proof. Without loss of generality we can assume that {x′
n} ⊆ E′

+. By
Theorem 4.21, the ideal Ex generated by x in E is an AM -space under the
norm ‖y‖∞ = inf

{
λ > 0: |y| ≤ λx

}
. Let J : Ex → E denote the natural

inclusion, i.e., Jy = y for all y ∈ Ex. Then J is interval preserving and so,
by Theorem 2.19, J ′ : E′ → E′

x is a lattice homomorphism.
Now let ε > 0. Since E has order continuous norm, there exists by

Theorem 4.18 some 0 ≤ y′ ∈ E′ such that (x′
n − y′)+(x) < ε holds for all n.

Therefore,∥∥(J ′x′
n − J ′y′)+

∥∥ = [J ′(x′
n − y′)]+(x) = [J ′(x′

n − y′)+](x)

= (x′
n − y′)+(Jx) = (x′

n − y′)+(x) < ε

holds for all n. Using the identity u = (u − v)+ + u ∧ v, we see that{
J ′x′

1, J
′x′

2, . . .} ⊆ [0, J ′y′] + εB , (�)

where B is the closed unit ball of E′
x. By Theorem 4.23 we know that E′

x

is an AL-space, and hence it has order continuous norm. Thus, [0, J ′y′] is
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weakly compact (Theorem 4.9), and so from (�) and Theorem 3.44 it follows
that {J ′x′

n} is a weakly relatively compact subset of E′
x. Pick a subsequence

{y′n} of {x′
n} and some f ∈ E′

x such that J ′y′n−→w f holds in E′
x. Now if

x′ ∈ E′ is any w∗-accumulation point of {y′n}, then note that

lim
n→∞

y′n(y) = lim
n→∞

[J ′y′n](y) = x′(y)

holds for all y ∈ [0, x].

Let {xn} be a sequence in a Banach space X. Then recall that {xn} is
said to be a weak Cauchy sequence whenever lim x′(xn) exists in R for
each x′ ∈ X ′. Note that (by the uniform boundedness principle) for this to
happen, it is necessary and sufficient that xn−→w

∗
x′′ holds in X ′′ for some

x′′ ∈ X ′′.
The next theorem deals with weak Cauchy sequences in Banach lattices.

Theorem 4.25. Let E be a Banach lattice such that both E and E′ have
order continuous norms. Then every norm bounded sequence of E has a
weak Cauchy subsequence.

Proof. Let {xn} be an arbitrary norm bounded sequence of E and put
x =
∑∞

n=1 2−n|xn|. By Theorem 4.15 there exists some 0 ≤ f ∈ E′ which is
strictly positive on [0, x]. Since E′ has order continuous norm, there exist
(by Theorem 4.24) a subsequence {yn} of {xn} and some x′′ ∈ E′′ such that
yn(y′) = y′(yn) → x′′(y′) holds for each y′ ∈ [0, f ].

Now let A be the ideal generated by f in E′, and let B be the band
generated by f . Since E′ has order continuous norm, B is the norm closure
of A (see Theorem 1.38), and thus yn(y′) → x′′(y′) holds for all y′ ∈ B.

Next, we claim that g(xn) = 0 holds for all g ∈ Bd. To see this, let
g ∈ Bd. Then, by Theorem 1.67, we see that Cf ⊆ Ng. On the other hand,
since f is strictly positive on [0, x], we have Ex ∩ Nf = {0}. Therefore,

Ex ⊆ Nd
f = Cf ⊆ Ng ,

from which it follows that g(xn) = 0 holds for all n and all g ∈ Bd.
In view of E′ = B ⊕ Bd, we see that lim y′(yn) exists in R for each

y′ ∈ E′. In other words, {yn} is a weak Cauchy subsequence of {xn}, and
the proof is finished.

Examples of abstract Lp-spaces are provided by the Banach lattices
Lp(µ) for 1 ≤ p < ∞. Our next objective is to show that, in fact, these
are the only type of abstract Lp-spaces. To do this, we need to recall a few
things about Boolean algebras.
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Recall that a complemented distributive lattice is referred to as Boolean
algebra. Two Boolean algebras A and B are said to be isomorphic when-
ever there is a one-to-one mapping from A onto B preserving the lattice
operations as well as the complements. If Ω is a topological space, then the
collection of all subsets of Ω that are simultaneously closed and open (called
clopen sets) is a Boolean algebra under the usual operations of union, in-
tersection, and complementation. Remarkably, every Boolean algebra A is
isomorphic to some Boolean algebra of clopen sets (called a representation
of A).

We are interested in the representations of Dedekind complete Boolean
algebras. A Boolean algebra A is said to be Dedekind complete whenever
every nonempty subset of A has a supremum. Also, recall that a topological
space Ω is said to be extremally disconnected if the closure of every open
set is itself an open set. The following classical theorem of M. H. Stone [180]
presents a link between Dedekind complete Boolean algebras and Hausdorff
compact extremally topological spaces. (Exercise 20 at the end of the sec-
tion gives an indication of how one can prove this important representation
theorem.)

Theorem 4.26 (Stone). A Boolean algebra is Dedekind complete if and only
if it is isomorphic to the Boolean algebra of all clopen subsets of a (unique up
to homeomorphism) Hausdorff, compact and extremally disconnected topo-
logical space.

Let A be a Dedekind complete Boolean algebra. Then the Boolean al-
gebra of all clopen subsets of the unique Hausdorff, compact and extremally
disconnected topological space that is isomorphic to A is known as the Stone
space of A.

Now consider a Hausdorff, compact and extremally disconnected topo-
logical space Ω, and denote by Σ the Boolean algebra of all clopen subsets
of Ω. Since every set in Σ is necessarily compact, it is easy to see that
every finitely additive measure on Σ is automatically σ-additive, i.e., it is
a measure. This observation will be used in the proof of the next theorem
that characterizes the abstract Lp-spaces. For AL-spaces the result is due
to S. Kakutani [81]. For 1 < p < ∞ the representation theorem was estab-
lished by H. F. Bohnenblust [40] and H. Nakano [151] under some additional
conditions.

Theorem 4.27 (Kakutani–Bohnenblust–Nakano). A Banach lattice E is an
abstract Lp-space for some 1 ≤ p < ∞ if and only if E is lattice isometric
to some concrete Lp(µ)-space.

Proof. The “only if” part needs proof. To this end, let E be an abstract Lp-
space for some 1 ≤ p < ∞. Assume at the beginning that E has also a weak
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order unit e > 0. Let B denote the Dedekind complete Boolean algebra of
all components of e, i.e., B = {x ∈ E : x∧ (e−x) = 0} (see Theorem 1.49).
Also let E0 denote the Riesz subspace of E consisting of all e-step functions
of E. That is, s belongs to E0 if and only if there exist pairwise disjoint
components e1, . . . , en of e with

∑n
i=1 ei = e and real constants α1, . . . , αn

satisfying s =
∑n

i=1 αiei. By Theorem 2.8 we know that E0 is order dense
in E. Since E has order continuous norm, E0 is also norm dense in E. By
Theorem 4.26 there exists a Hausdorff, compact and extremally disconnected
topological space Ω such that B is isomorphic to the Boolean algebra Σ of
all clopen subsets of Ω. Let x �→ Sx be this isomorphism. Next, define a
set function µ : Σ → [0,∞) by µ(Sx) = ‖x‖p, and note that the p-additivity
of the norm implies that µ is a finitely additive measure, and hence µ is a
measure on Σ. Thus, we can apply the Carathéodory extension procedure
and obtain the σ-algebra of all µ-measurable subsets of Ω; see [8, Chapter 3].
Let L0 be the Riesz subspace of Lp(µ) consisting of all step functions of the
measure space (Ω, Σ, µ). Clearly, L0 is order (and hence norm) dense in
Lp(µ).

Now consider the mapping T : E0 → L0 defined by

T
( n∑

i=1

αiei

)
=

n∑
i=1

αiχSei
.

It is not difficult to see that T is well defined, i.e, T (s) depends only upon
s and not on its particular representation as an e-step function. Also, it is
easy to see that T is an onto lattice isometry. To see that T is onto, let S
be a µ-measurable subset of Ω. If S is a σ-set, then there exists a sequence
{xn} of B with xn ↑ and S =

⋃∞
n=1 Sxn . It follows that xn ↑ x holds in B

(and in E), and so by the order continuity of the norm, we have

µ∗(S) = lim
n→∞

µ(Sxn) = lim
n→∞

‖xn‖p = ‖x‖p = µ(Sx) .

Therefore, the vector x ∈ B satisfies S ⊆ Sx and µ∗(S) = µ(Sx). Now for
the general case, pick a sequence {yn} ⊆ B with S ⊆ Syn+1 ⊆ Syn for all
n and µ∗(S) = limµ(Syn), and then note that the vector y = inf{yn} ∈ B
satisfies S ⊆ Sy and µ∗(S) = µ(Sy). Therefore, χS = χSy

holds, and this
shows that T : E0 → L0 is onto. Finally, since E0 and L0 are both order and
norm dense in E and Lp(µ), respectively, it is easy to see that T extends to
a lattice isometry from E onto Lp(µ).

If E does not have a weak unit, consider a maximal disjoint family
{ei : i ∈ I} of nonzero positive vectors of E. Let Bi = Bei , the principal
band generated by ei in E. By the preceding case, for each i ∈ I there exists
a measure space (Ωi, Σi, µi) and an onto lattice isometry Ti : Bi → Lp(µi).



200 4. Banach Lattices

We can assume that Ωi ∩ Ωj = �© for i �= j. Put

Ω =
⋃
i∈I

Ωi , Σ =
{
S ⊆ Ω: S ∩ Ωi ∈ Σi for all i ∈ I

}
,

and
µ(S) =

∑
i∈I

µi(S ∩ Ωi) for all S ∈ Σ ,

and observe that (Ω, Σ, µ) is a measure space. Next, for each x ∈ E put
xi = PBi(x), and note that |x| = sup

{
|xi| : i ∈ I

}
holds. By the order

continuity and p-additivity of the norm, we see that ‖x‖p =
∑

i∈I ‖xi‖p

holds, from which it easily follows that the mapping T : E → Lp(µ), defined
by T (x) =

∑
i∈I Ti(xi) is a lattice isometry from E onto Lp(µ). The proof

of the theorem is now complete.

Now let E be an AL-space. Then from Theorem 4.27 it should be clear
that E has an additive norm. That is, ‖x + y‖ = ‖x‖ + ‖y‖ holds for all
x, y ∈ E+. This, coupled with Lemma 1.10, shows that the formula

e(x) = ‖x+‖ − ‖x−‖ , x ∈ E ,

defines a positive linear functional on E. On the other hand, the inequality

|x′|(|x|) ≤ ‖x′‖ · ‖x‖ = ‖x′‖e
(
|x|
)

shows that e is an order unit of E′ and that U ′ = [−e, e] holds. In other
words, we have shown that:

• The norm dual of an AL-space is an AM -space with unit.

For the representations of AM -spaces, we shall need the following result.

Theorem 4.28. Let E be an AM -space, and let 0 ≤ x′ ∈ E′ satisfy
‖x′‖ = 1. Then x′ is an extreme point of U ′

+ if and only if x′ is a lat-
tice homomorphism (from E to R).

Proof. Assume first that x′ is an extreme point of U ′
+. If 0 < y′ < x′ holds,

then
x′ = ‖y′‖ · y′

‖y′‖ + ‖x′ − y′‖ · x′−y′

‖x′−y′‖ ,

and since E′ is an AL-space, we have ‖y′‖ + ‖x′ − y′‖ = ‖x′‖ = 1, and so
y′ = ‖y′‖x′. Thus, if |y′| ≤ x′ holds, then there exists some λ with |λ| ≤ 1
and y′ = λx′. Now let x ∈ E. Then by Theorem 1.23 there exists some
y′ ∈ E′ with |y′| ≤ x′ and x′(|x|) = |y′(x)|, and so from

|x′(x)| ≤ x′(|x|) = |y′(x)| = |λx′(x)| ≤ |x′(x)| ≤ x′(|x|) ,

we get |x′(x)| = x′(|x|). That is, x′ is a lattice homomorphism.



4.1. Banach Lattices with Order Continuous Norms 201

For the converse assume that x′ is a lattice homomorphism. Note first
that if 0 ≤ y′ ≤ x′ holds and x ∈ Kerx′, then it follows from

|y′(x)| ≤ y′(|x|) ≤ x′(|x|) = |x′(x)| = 0

that x ∈ Ker y′. That is, Kerx′ ⊆ Ker y′, and so by Lemma 3.15 there exists
some 0 ≤ λ ≤ 1 with y′ = λx′. Now assume that x′ = αy′ + (1−α)z′ holds
for some y′, z′ ∈ U ′

+ and some 0 < α < 1. Clearly, ‖y′‖ = ‖z′‖ = 1. On
the other hand, from 0 ≤ αy′ ≤ x′ and 0 ≤ (1−α)z′ ≤ x′ (and the above
discussion), there exist β, γ > 0 with y′ = βx′ and z′ = γx′. It follows that
β = γ = 1, so that x′ is an extreme point of U ′

+.

If Ω is a Hausdorff compact topological space, then C(Ω) with the sup
norm, i.e., with the norm ‖f‖∞ = sup

{
|f(ω)| : ω ∈ Ω

}
, is an AM -space hav-

ing unit the constant function one. It is remarkable that the C(Ω) Banach
lattices (with Ω Hausdorff and compact) are the only type of AM -spaces
with unit. This important result was proved by S. Kakutani [82] and was
extended by H. F. Bohnenblust and S. Kakutani [41]. The same result was
established independently by M. Krein and S. Krein [101].

Theorem 4.29 (Kakutani–Bohnenblust and M. Krein–S. Krein). A Banach
lattice E is an AM -space with unit if and only if is lattice isometric to some
C(Ω) for a (unique up to homeomorphism) Hausdorff compact topological
space Ω.

In particular, a Banach lattice is an AM -space if and only if it is lattice
isometric to a closed Riesz subspace of some C(Ω)-space.

Proof. Assume first that E = C(Ω) holds for some Hausdorff compact
topological space Ω. Let us examine next the role of Ω in connection with
the lattice structure of E. Denote by e the constant function one on Ω.

Consider the set

K =
{
x′ ∈ U ′

+ : x′ is an extreme point of U ′
+ with ‖x′‖ = x′(e) = 1

}
. (�)

By Theorem 4.28 we know that

K =
{
x′ ∈ U ′

+ : x′ is a lattice homomorphism with ‖x′‖ = x′(e) = 1
}
, (��)

from which it easily follows that K is w∗-closed, and hence w∗-compact.
On the other hand, if x′ ∈ K, then by Theorem 2.33 there exists a unique
ω ∈ Ω satisfying x′ = δω. Thus, a mapping ω �→ δω, from Ω onto (K, w∗),
is established, which is easily seen to be one-to-one and continuous (and
hence a homeomorphism). In other words, Ω can be interpreted as playing
the role of all nonzero extreme points of U ′

+ with the w∗-topology. In par-
ticular, if C(Ω) is lattice isometric to some C(Ω1), then Ω and Ω1 must be
homeomorphic.
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Now let E be an AM -space with unit e > 0. By the preceding discussion,
for E to be lattice isometric to some C(Ω) there is only one choice for Ω;
namely, Ω must be homeomorphic to K as defined by (�). So, consider
K as in (�) (which by Theorem 3.14 is nonempty), and note that (��)
holds. Thus, (K, w∗) is a compact topological space. Consider the mapping
T : E → C(K) defined by

[Tx](x′) = x′(x) , x ∈ E and x′ ∈ K .

Since the set of extreme points of U ′
+ is K∪{0}, it follows from Theorem 3.14

that T is a norm preserving lattice isomorphism from E to C(K). Also,
[Te](x′) = x′(e) = 1 holds for all x′ ∈ K, and clearly T (E) separates
the points of K. Since T (E) is closed, it follows from the classical Stone–
Weirstrass theorem (see for instance [8, Theorem 11.3, p. 88]) that T is onto.
Thus, E is lattice isometric to C(K) as desired.

Finally, to establish the last claim of the theorem, note that if E is an
AM -space, then E′ is an AL-space, and so E′′ is an AM -space with unit
including E as a closed Riesz subspace.

The next two results are consequences of the preceding theorem and
describe some important properties of AM -spaces. The first one is due to
U. Krengel [105].

Theorem 4.30 (Krengel). If A is a nonempty norm totally bounded subset
of an AM -space E, then the set D of all finite suprema of A is likewise norm
totally bounded. In particular, sup A exists in E and sup A ∈ D holds.

Proof. By Theorem 4.29 we can assume that E is a closed Riesz subspace of
some C(Ω)-space with Ω Hausdorff and compact. Thus, A can be considered
as a norm totally bounded subset of C(Ω), which according to the classical
Ascoli–Arzelà theorem means that A is norm bounded and equicontinuous;
see for instance [8, Theorem 9.10, p. 75].

Now let g ∈ D. Pick f1, . . . , fn ∈ A with g =
∨n

i=1 fi. Since A is
equicontinuous on Ω, given ε > 0 and ω ∈ Ω, there exists a neighborhood V
of ω such that |f(t)− f(ω)| < ε holds for all t ∈ V and all f ∈ A. From the
inequality ∣∣g(t)− g(ω)

∣∣ ≤ max
{
|fi(t)− fi(ω)| : i = 1, . . . , n

}
,

it follows that |g(t)− g(ω)| < ε holds for all t ∈ V (and all g ∈ D). That
is, D is also equicontinuous on Ω, and since D is clearly norm bounded,
it follows (from the Ascoli–Arzelà theorem again) that D is likewise norm
totally bounded.

Finally, let A denote the set of all finite subsets of A directed by the
inclusion ⊆ . For each α ∈ A put gα = sup α, and note that the net {gα} ⊆ D
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satisfies gα ↑ . By the norm compactness of D there exists a subnet of {gα}
that converges in norm to some g ∈ D, and from this it easily follows that
sup A = sup D = sup{gα} = g.

A Banach lattice E is said to have weakly sequentially continuous
lattice operations whenever xn−→w 0 in E implies |xn|−→w

∗
0 in E.

In case E = C(Ω) for some Hausdorff compact topological space Ω, an
easy application of the Riesz representation theorem shows that a sequence
{fn} ⊆ E satisfies fn−→w 0 in E if and only if {fn} is norm bounded
and fn(ω) → 0 holds for each ω ∈ Ω. Therefore, fn−→w 0 in C(Ω) implies
|fn|−→w 0, and so by Theorem 4.29 every AM -space has weakly sequentially
continuous lattice operations. Thus (from Theorem 3.40), the following
result should be immediate.

Theorem 4.31. In an AM -space the lattice operations are weakly sequen-
tially continuous.

In particular, if A is a weakly relatively compact subset of an AM -space,
then |A|, A+, and A− are likewise weakly relatively compact subsets.

The interested reader will find more on Banach lattices in the books
by H. H. Schaefer [174], H. E. Lacey [110], and J. Lindenstrauss and
L. Tzafriri [112, 113]. Also, the reader will benefit by reading the sur-
vey articles [46] and [47].

Exercises

1. If {Xn} is a sequence of Banach spaces, then show that:
(a) (X1 ⊕ X2 ⊕ · · · )′1 = (X ′

1 ⊕ X ′
2 ⊕ · · · )∞.

(b) (X1 ⊕ X2 ⊕ · · · )′0 = (X ′
1 ⊕ X ′

2 ⊕ · · · )1.
2. Show that for each 1 ≤ p < ∞ the Banach lattice (�p ⊕ �p ⊕ · · · )p is

lattice isometric to �p.

3. This exercise shows that a positive linear functional on a normed Riesz
space need not be continuous. Let E be the Riesz space of all real se-
quences that are eventually zero. Show that:
(a) Under the sup norm E is a normed Riesz space but not a Banach

lattice.
(b) The norm completion of E is c0.
(c) The formula

f(x1, x2, . . .) =
∞∑

n=1

nxn

defines a positive linear functional on E that fails to be continuous.
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4. Show that every separable Banach lattice admits a strictly positive linear
functional. [Hint : Pick a countable w∗-dense subset {x′

1, x
′
2, . . .} of U ′

+,
and consider the positive linear functional x′ =

∑∞
n=1 2−nx′

n. ]

5. Recall that a Banach lattice is said to have σ-order continuous norm
whenever xn ↓ 0 implies ‖xn‖ ↓ 0.
(a) Give an example of a Banach lattice whose norm is σ-order contin-

uous but not order continuous.
(b) Show that a Banach lattice E has σ-order continuous norm if and

only if E∼
c = E′.

6. (Aliprantis–Burkinshaw–Kranz [18]) Show that a Dedekind σ-complete
Banach lattice E has order continuous norm if and only if 0 ≤ Tn ↑ T in
Lb(E) implies T 2

n ↑ T 2. [Hint : Use Theorem 1.79. ]

7. Let A be an ideal of a Banach lattice E, and let p be a lattice norm
on A such that the natural embedding J : (A, p) → E (i.e., Jx = x for
all x ∈ A) is continuous. If Â denotes the norm completion of (A, p),
then show that the unique continuous extension of J to all of Â is an
interval preserving lattice homomorphism. [Hint : Denote by J again the
extension, and note that the extension is clearly a lattice homomorphism.
To see that J is interval preserving, assume that 0 ≤ x ∈ Â and y ∈ E+

satisfy 0 ≤ y ≤ Jx. Pick a sequence {xn} ⊆ A+ with p(x− xn) → 0, and
note that

‖y ∧ xn − y‖ = ‖y ∧ Jxn − y ∧ Jx‖ ≤ ‖Jxn − Jx‖ → 0 . (�)

On the other hand, the inequality |y∧xn−y∧xm| ≤ |xn−xm| shows that
{y ∧ xn} is a p-Cauchy sequence of A+, and so for some 0 ≤ z ∈ Â we
have p(y ∧xn − z) → 0. From 0 ≤ y ∧xn ≤ xn, it follows that 0 ≤ z ≤ x.
Finally, from (�) and ‖y ∧ xn − Jz‖ = ‖J(y ∧ xn)− Jz‖ → 0, we see that
y = Jz holds. ]

8. Let E be a Riesz space. Then for a subset A of E define

A∨ :=
{
x ∈ E : ∃x1, . . . , xn ∈ A with x =

n∨
i=1

xi

}
,

and

A∧ :=
{
x ∈ E : ∃x1, . . . , xn ∈ A with x =

n∧
i=1

xi

}
,

Also, we let A∨∧ := (A∨)∧ and A∧∨ := (A∧)∨. Show that:
(a) A∨∧ = A∧∨.
(b) If A is a vector subspace, then A∨∧ is the Riesz subspace generated

by A (i.e., A∨∧ is the smallest Riesz subspace including A) and

A∨∧ = A∨ − A∨ = A∧ − A∧ .

9. Show that every separable vector subspace of a Banach lattice is included
in a separable Banach sublattice. [Hint : Let X be a separable vector
subspace of a Banach lattice E. If C is a countable dense subset of X,
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then C∧∨ (for notation see the previous exercise) is countable, and by the
continuity of the lattice operations C∧∨ is norm dense in X∧∨. ]

10. This exercise adds several equivalent statements to Theorem 4.13. They
are due to O. Burkinshaw [48], D. H. Fremlin [64], P. G. Dodds and
D. H. Fremlin [54], and P. Meyer-Nieberg [142].

For a lattice seminorm p on a Riesz space E and a vector x ∈ E+

show that the following statements are equivalent.
(a) If {xn} is a disjoint sequence of [0, x], then lim p(xn) = 0.
(b) If 0 ≤ xn ↑≤ x holds in E, then {xn} is a p-Cauchy sequence.
(c) For each ε > 0 there exists some 0 ≤ g ∈ E∼ such that whenever

f ∈ E∼ satisfies |f(y)| ≤ p(y) for all y ∈ E, then we have
(
|f | − g

)+(x) < ε .

(d) For each ε > 0 there exist 0 ≤ g ∈ E∼ and δ > 0 such that y ∈ [0, x]
and g(y) < δ imply p(y) < ε.

(e) If {xn} is a sequence of [0, x] with xn−→σ(E,E∼) 0, then lim p(xn)=0.
(f) If {fn} is a disjoint sequence of E∼ satisfying |fn(y)| ≤ p(y) for all

y ∈ E and all n, then lim |fn|(x) = 0.
(g) If {xn} is a disjoint sequence of [0, x] and {fn} is a disjoint se-

quence of E∼ satisfying |fn(y)| ≤ p(y) for all y ∈ E and all n, then
lim fn(xn) = 0.

11. Show that a Banach lattice E has order continuous norm if and only if
|σ|(E′, E) is consistent with the Riesz dual system 〈E,E′〉.

12. If E is an Archimedean uniformly complete Riesz space, then show that
every principal ideal Ex of E is an AM -space under the norm

‖y‖∞ = min
{
λ ≥ 0: |y| ≤ λ|x|

}
.

13. Let A be a normed closed ideal of a normed Riesz space E. Show that:
(a) The quotient Riesz space E/A under the quotient norm

‖ẋ‖ = inf
{
‖y‖ : y ∈ ẋ

}
is a normed Riesz space.

(b) If the norm of E is order continuous, then the quotient norm on
E/A also is order continuous.

(c) If E is an AM -space (resp. an AL-space), then E/A is likewise an
AM -space (resp. an AL-space).

14. If E is a normed Riesz space, then show that:
(a) The band generated by E in E′′ is precisely (E′)∼n .
(b) (E′)∼n = E��↑↓ (see Section 2.1 for the notation).

15. Show that for each 0 < ε < 1 there exists a sequence {fn} ⊆ C[0, 1] with
the following properties:
(a) 0 ≤ fn ≤ 1.
(b) fn ↓ 0 in C[0, 1].
(c)
∫ 1

0
fn(x) dx ≥ 1 − ε holds for all n.

[Hint : Use the Cantor set of Lebesgue measure ε. ]
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16. Let Ω be a Hausdorff compact topological space. Then show that C(Ω)
is a Dedekind complete Riesz space if and only if Ω is extremally discon-
nected (i.e., if and only if the closure of every open set is also open).

17. Show that a Hausdorff compact topological space Ω is metrizable if and
only if C(Ω) is a separable Banach lattice.

18. (Bohnenblust [40]) Let c0(Ω) denote the vector space of all real-valued
functions f on a nonempty set Ω such that for each ε > 0 there exists a
finite subset Φ of Ω (depending upon f and ε) satisfying |f(ω)| < ε for
all ω /∈ Φ.
(a) Show that under the sup norm c0(Ω) is an AM -space with order

continuous norm.
(b) Show that c0(Ω) is an AM -space with unit if and only if Ω is finite.
(c) Show that if E is an AM -space with order continuous norm, then

there exists a nonempty set Ω so that E is lattice isometric to c0(Ω).

19. Let E be a Banach lattice. Show that E and E′ both have order contin-
uous norms if and only if E is an order dense ideal of E′′.

20. This exercise presents by steps the Stone representation theorem for
Boolean algebras [180].

Let B be a Boolean algebra. A nonempty subset J of B is said to be
an ideal whenever

(i) for each x, y ∈ J we have x ∨ y ∈ J , and
(ii) x ≤ y and y ∈ J imply x ∈ J .

If J �= B holds, then J is called a proper ideal. A proper ideal J of B
is said to be a maximal ideal whenever the only ideal that includes J
properly is B itself. Finally, a proper ideal J is said to be a prime ideal
if x ∧ y ∈ J implies either x ∈ J or y ∈ J .
(a) Show that a proper ideal of B is a prime ideal if and only if it is a

maximal ideal.
(b) If an ideal J of B is a maximal ideal with respect to the property of

not including an element x, then show that J is a prime ideal.
(c) If J is an ideal of B and x /∈ J , then show that there exists a prime

ideal I with J ⊆ I and x /∈ I.
(d) Let Ω denote the collection of all proper prime ideals of B. For each

x ∈ B put Ωx = {ω ∈ Ω: x /∈ ω}. Show that {Ωx : x ∈ B} forms a
base for a Hausdorff compact topology τ on Ω called the hull-kernel
topology. (The topological space (Ω, τ) is referred to as the Stone
space of B.)

(e) Show that a subset A of Ω is clopen with respect to τ if and only if
there exists some x ∈ B with A = Ωx.

(f) Show that x �→ Ωx is an isomorphism from B onto the Boolean
algebra of all clopen subsets of (Ω, τ).

(g) Show that (Ω, τ) is extremally disconnected if and only if B is a
Dedekind complete Boolean algebra.

(h) Show that if Ω is a Hausdorff, compact, extremally disconnected
topological space, then there exists a unique (up to isomorphism)
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Dedekind complete Boolean algebra whose Stone space is homeo-
morphic to Ω.

4.2. Weak Compactness in Banach Lattices

On an infinite dimensional normed Riesz space, the weak topology is not
locally solid and the lattice operations are seldom weakly sequentially con-
tinuous. For these reasons, relationships between weak compactness and
the lattice structure are very subtle. However, there are some important
connections between weak compactness and the order structure of a Banach
lattice, and they will be discussed in this section. Our approach will be
based upon two fundamental properties of the Banach lattice �1.

Recall that a Banach space is said to have the Schur property whenever
every weak convergent sequence is norm convergent, i.e., whenever xn−→w 0
implies ‖xn‖ → 0. Note that (by Theorem 3.40) a Banach space has the
Schur property if and only if every weakly compact set is norm compact.

S. Banach [30] has proved that �1 has the Schur property. This will be
a basic result for the study of weak compactness in Banach lattices.

Theorem 4.32 (Banach). The Banach lattice �1 has the Schur property,
i.e., xn−→w 0 in �1 implies ‖xn‖1 → 0.

Proof. Let xn =
(
xn

1 , xn
2 , . . .
)
−→w 0 in �1, and assume by way of contradic-

tion that ‖xn‖1 �→ 0. Then, by passing to a subsequence, we can assume
without loss of generality that for some ε > 0 we have

‖xn‖1 =
∞∑
i=1

|xn
i | > 5ε

for all n. Keep in mind that (in view of �′1 = �∞) we have xn
i −→ 0 for each

i.

n} and
{mn} of natural numbers such that for each n we have:

(a)
∑kn

i=1 |x
mn
i | < ε.

(b)
∑kn+1

i=kn+1 |x
mn
i | > 3ε.

(c)
∑

i>kn+1
|xmn

i | < ε.

To see this, we shall use induction. Start with k1 = 1, and then choose
an integer m1 ≥ 1 with |xm1

1 | < ε (this is possible since
the inductive argument: Assume k1 < · · · < kn and m1 < · · · < mn satisfy
(a), (b), and (c). Since xmn ∈ �1, there exists some kn+1 > kn such that

n→∞

xn−→n→∞ 0

Now we claim that there exist two strictly increasing sequences {k

). Now for
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∑
i>kn+1

|xmn
i | < ε. From limm→∞

∑kn+1

i=1 |xm
i | = 0, it follows that for some

mn+1 > mn we have
∑kn+1

i=1 |xmn+1

i | < ε. On the other hand, note that
kn+1∑

i=kn+1

|xmn
i | =

∞∑
i=1

|xmn
i | −

kn∑
i=1

|xmn
i | −

∑
i>kn+1

|xmn
i | > 5ε − ε − ε = 3ε ,

and the induction is finished.
Next put y1 = 1, and for each kn < i ≤ kn+1 let yi ∈ {−1, 1} be such

that yix
mn
i = |xmn

i |. Then y = (y1, y2, . . .) ∈ �∞ = �′1, and

∣∣〈xmn , y〉
∣∣ =

∣∣∣
∞∑
i=1

yix
mn
i

∣∣∣ ≥
kn+1∑

i=kn+1

|xmn
i | −

kn∑
i=1

|xmn
i | −

∑
i>kn+1

|xmn
i |

> 3ε − ε − ε = ε

for all n. However, this contradicts xmn−→w 0, and so lim ‖xn‖1 = 0 holds,
as desired.

The next simple characterization of the norm totally bounded subsets
of �1 will be needed for our discussion. Keep in mind that (by the previous
theorem) a subset of �1 is norm compact if and only if it is weakly compact.

Theorem 4.33. For a norm bounded subset A of �1 the following statements
are equivalent:

(1) A is norm totally bounded.
(2) For each ε > 0 there exists some n such that

∑∞
i=n |xi| < ε holds

for each x = (x1, x2, . . .) ∈ A.

Proof. (1) =⇒ (2) Let ε > 0. Pick a finite subset Φ of A with A ⊆ Φ + εU .
Since Φ is a finite set, it is easy to see that there exists some n satisfying∑∞

i=n |yi| < ε for each y = (y1, y2, . . .) ∈ Φ. Now if x = (x1, x2, . . .) ∈ A,
then pick y ∈ Φ and u ∈ U with x = y + εu, and note that

∞∑
i=n

|xi| ≤
∞∑

i=n

|yi| + ε
∞∑

i=n

|ui| < ε + ε = 2ε .

(2) =⇒ (1) Put sk = sup
{
|xk| : x = (x1, x2, . . .) ∈ A

}
. Since A is norm

bounded, each sk is a nonnegative real number. Now let ε > 0. Pick some
n so that (2) holds, and consider the set

B = [−s1, s1] × · · · × [−sn, sn] × {0} × {0} × · · · .

Clearly, B is a closed and bounded subset lying in a finite dimensional vector
subspace of �1, and hence B is a compact subset of �1. On the other hand,
A ⊆ B + εU holds, and this easily implies that A is a norm totally bounded
subset of �1 (see also Theorem 3.1).
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We start our discussion on the weak compactness in Banach lattices
with an important relationship between weakly compact sets and disjoint
sequences.

Theorem 4.34. If W is a weakly relatively compact subset of a Banach
lattice, then every disjoint sequence in the solid hull of W converges weakly
to zero.

Proof. Let W be a relatively weakly compact subset of a Banach lattice
E, and let {xn} ⊆ E be a disjoint sequence lying in the solid hull of W .
Pick a sequence {yn} ⊆ W satisfying |xn| ≤ |yn| for all n, and let ε > 0 and
0 ≤ x′ ∈ E′ be fixed.

Consider each xn as an element of E′′, and denote by Pn the order pro-
jection of E′ onto the carrier Cxn of xn. From xn ⊥ xm and Theorem 1.67,
we see that Pnx′ ⊥ Pmx′ holds for n �= m. Also, from Theorem 1.23 we
have ∣∣x′(xn)

∣∣ ≤ x′(|xn|) = [Pnx′](|xn|) ≤ [Pnx′](|yn|)
= max

{
y′(yn) : |y′| ≤ Pnx′} ,

and so for each n there exists some y′n ∈ E′ with |y′n| ≤ Pnx′ and∣∣x′(xn)
∣∣ ≤ y′n(yn) . (�)

Next, note that for each x ∈ E and each k we have
k∑

i=1

|y′i(x)| ≤
[ k∑

i=1

Pix
′
]
(|x|) ≤ x′(|x|) ,

and so
(
y′1(x), y′2(x), . . .

)
∈ �1. Now define the operator T : E → �1 by

Tx =
(
y′1(x), y′2(x), . . .

)
.

The inequality ‖Tx‖1 =
∑∞

n=1 |y′n(x)| ≤ x′(|x|) ≤ ‖x′‖ ·‖x‖ guarantees that
T is continuous. In particular, T (W ) is a weakly relatively compact subset
of �1.

Since (by Theorem 4.32) weak and norm convergence of sequences in
�1 coincide, we see that T (W ) is a norm totally bounded subset of �1. By
Theorem 4.33, there exists some k such that

∑∞
i=k |y′i(x)| < ε holds for all

x ∈ W . In particular, since {yn} ⊆ W holds, it follows from (�) that

∣∣x′(xn)
∣∣ ≤ y′n(yn) ≤

∞∑
i=k

|y′i(yn)| < ε

for all n ≥ k. Therefore, limx′(xn) = 0. That is, xn−→w 0 holds in E, as
claimed.
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In the sequel, the following technique for constructing disjoint sequences
will be needed.

Lemma 4.35. Let E be a Riesz space, and let {xn} be a sequence of E+. If
some x ∈ E+ satisfies 2−nxn ≤ x for all n, then the sequence {un}, defined
by

un =
[
xn+1 − 4n

n∑
i=1

xi − 2−nx
]+

,

is a disjoint sequence.

Proof. If m > n ≥ 1, then note that

0 ≤ 4−mum =
[
4−mxm+1 −

m∑
i=1

xi − 2−3mx
]+

≤
[
4−mxm+1 − xn+1

]+

≤
[
2−n · 2−m−1xm+1 − xn+1

]+ ≤
[
2−nx + 4n

n∑
i=1

xi − xn+1

]+

=
[
xn+1 − 4n

n∑
i=1

xi − 2−nx
]−

⊥ un .

This implies un ⊥ um.

The next theorem is a powerful tool. It describes an important approx-
imation property of continuous operators in terms of disjoint sequences.

Theorem 4.36. Let T : E → X be a continuous operator from a Banach
lattice E to a Banach space X, let A be a norm bounded solid subset of E,
and let ρ be a norm continuous seminorm on X. If lim ρ(Txn) = 0 holds
for each disjoint sequence {xn} in A, then for each ε > 0 there exists some
u ∈ E+ lying in the ideal generated by A such that

ρ
(
T [(|x| −u)+]

)
< ε

holds for all x ∈ A.

Proof. Suppose that the claim is false. Then there exists some ε > 0 such
that for each u ≥ 0 in the ideal generated by A we have ρ(

(
T (|x|−u)+

)
≥ ε

for at least one x ∈ A. In particular, there exists a sequence {xn} ⊆ A such
that for each n we have

ρ
(
T
(
|xn+1| − 4n

n∑
i=1

|xi|
)+)

≥ ε . (�)

Now put y =
∑∞

n=1 2−n|xn|. Also, let wn =
(
|xn+1| − 4n

∑n
i=1 |xi|

)+ and
vn =

(
|xn+1| − 4n

∑n
i=1 |xi| − 2−ny

)+. By Lemma 4.35, the sequence {vn}



4.2. Weak Compactness in Banach Lattices 211

is disjoint. Also, since A is solid and 0 ≤ vn ≤ |xn+1| holds, we see that
{vn} ⊆ A, and so by our hypothesis

lim
n→∞

ρ(Tvn) = 0 .

On the other hand, we have 0 ≤ wn−vn ≤ 2−ny, and so ‖wn−vn‖ ≤ 2−n‖y‖.
In particular, it follows that lim ρ

(
T (wn − vn)

)
= 0. From

ρ(Twn) ≤ ρ
(
T (wn − vn)

)
+ ρ(Tvn) ,

we see that lim ρ(Twn) = 0. However, this contradicts (�), and the proof is
finished.

The next theorem, showing that the weakly compact sets enjoy a useful
lattice approximation property, is the single most important result in this
section.

Theorem 4.37. Let W be a weakly relatively compact subset of a Banach
lattice E. Then for each ε > 0 and each 0 ≤ x′ ∈ E′ there exists some u ≥ 0
lying in the ideal generated by W such that

x′(|x| −u)+ < ε

holds for all x in the convex solid hull of W .

Proof. Let A denote the solid hull of a weakly relatively compact subset W
of a Banach lattice E, and let ρ be the norm continuous seminorm defined
by ρ(x) = x′(|x|), where x′ ≥ 0 is fixed. If I : E → E is the identity
operator, then Theorem 4.34 shows that lim ρ(Ixn) = 0 holds for every
disjoint sequence {xn} ⊆ A. Thus, by Theorem 4.36, there exists some
u ≥ 0 in the ideal generated by W satisfying

ρ
(
I(|x| − u)+

)
= x′(|x| − u

)+
< ε (†)

for all x ∈ W . Clearly, (†) also holds for each x ∈ A. On the other hand, if
x belongs to the convex solid hull of W , then there exist x1, . . . , xn ∈ A and
positive constants α1, . . . , αn with α1+· · ·+αn = 1 and x = α1x1+· · ·+αnxn

(see Exercise 1 of Section 3.3). Therefore,

x′(|x| −u
)+ ≤ x′

( n∑
i=1

αi(|xi| −u)+
)

=
n∑

i=1

αix
′(|xi| −u)+ <

n∑
i=1

αiε = ε

holds, and the proof is finished.

By Dini’s classical theorem, it is easy to see that order convergence in the
dual of a Banach lattice E implies uniform convergence on the weakly com-
pact subsets of E+. We are now in a position to prove something stronger,
namely, that order convergence in the dual implies uniform convergence on
the convex solid hull of any arbitrary weakly compact set.
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Theorem 4.38. For a Banach lattice E the following statements hold:

(1) If x′
α ↓ 0 in E′, then the net {x′

α} converges uniformly to zero on
the convex solid hull of any weakly relatively compact subset of E.

(2) Every order bounded disjoint sequence of E′ converges uniformly to
zero on the convex solid hull of any weakly relatively compact subset
of E.

Proof. (1) Let x′
α ↓ 0 in E′, let A be the convex solid hull of a weakly

relatively compact subset of E, and let ε > 0. If β is a fixed index, then
there exists (by Theorem 4.37) some u ∈ E+ such that x′

β(|x| −u)+ < ε

holds for all x ∈ A. In view of x′
α(u) ↓ 0, there exists some α0 � β satisfying

x′
α(u) < ε for all α � α0. Thus, for α � α0 and x ∈ A we have∣∣x′

α(x)
∣∣ ≤ x′

α(|x|) = x′
α(|x| ∧ u) + x′

α(|x| −u)+

≤ x′
α(u) + x′

β(|x| −u)+ < ε + ε = 2ε ,

and this shows that {x′
α} converges uniformly to zero on A.

(2) Let {x′
n} be a disjoint sequence of E′ satisfying |x′

n| ≤ x′ for each n.
From

∑n
i=1 |x′

i| ↑≤ x′, we see that
∑n

i=1 |x′
i| ↑ y′ holds in E′. Thus, by (1)

the sequence
{∑n

i=1 |x′
i|
}

converges uniformly to y′ on the convex solid hull
of any weakly relatively compact subset of E. The latter easily implies that
{|x′

n|} (and hence {x′
n}) converges uniformly to zero on the convex solid hull

of every weakly relatively compact subset of E.

When is the solid hull of a weakly relatively compact set weakly relatively
compact?

The next theorem provides some answers.

Theorem 4.39 (Abramovich–Wickstead). For a Banach lattice E we have
the following.

(1) E is an ideal of E′′ if and only if every weakly relatively compact
subset of E+ has a weakly relatively compact solid hull.

(2) If E is a band of E′′, then every weakly relatively compact subset
of E has a weakly relatively compact solid hull.

Proof. (1) Assume first that E is an ideal of E′′ (i.e., assume that E has
order continuous norm), and let A ⊆ E+ be a weakly relatively compact
set. Let x′′ ∈ E′′ be in the w∗-closure of Sol (A). Pick a net {xα} ⊆ Sol (A)
with xα−→w

∗
x′′. For each α choose some yα ∈ A with −yα ≤ xα ≤ yα. By

passing to a subnet, we can assume that yα−→w y holds in E. This implies
that −y ≤ x′′ ≤ y in E′′, and so x′′ ∈ E. Therefore, Sol (A) is a weakly
relatively compact subset of E.
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For the converse, assume that every weakly relatively compact subset of
E+ has a weakly relatively compact solid hull. Note that for each x ∈ E+

we have Sol ({x}) = [−x, x], and so the order intervals of E are weakly
compact. By Theorem 4.9, E is an ideal of E′′.

(2) Assume that E is a band of E′′ = (E′)∼. By Theorem 3.60, we know
that E is |σ|(E′′, E′)-dense in (E′)∼. Since every band of E′′ is |σ|(E′′, E′)-
closed (see Theorem 3.46), we conclude that E = (E′)∼n holds.

Now let A be the convex solid hull of a weakly relatively compact subset
of E, and let A denote its w∗-closure in E′′. We must show that A ⊆ E
holds. In view of E = (E′)∼n , it is enough to show that every vector of A is
order continuous on E′.

To this end, let x′′ ∈ A, let x′
α ↓ 0 in E′, and fix ε > 0. By Theorem 4.38

the net {x′
α} converges uniformly to zero on A, and so there exists some α0

satisfying |x′
α(x)| < ε for all α � α0 and all x ∈ A. Since x′′ ∈ A, for each

α there exists some yα ∈ A with
∣∣(x′′− yα)(x′

α)
∣∣ < ε. Then for α � α0 we

have ∣∣x′′(x′
α)
∣∣ ≤ ∣∣(x′′− yα)(x′

α)
∣∣+ ∣∣x′

α(yα)
∣∣ < ε + ε = 2ε .

Therefore, x′′ ∈ (E′)∼n , and the proof is finished.

In the preceding theorem, the first part was proved by A. W. Wick-
stead [193] and the second part by Y. A. Abramovich [2].

Recall that (by Theorem 4.9) a Banach lattice is an ideal in its double
dual if and only if it has order continuous norm. In the next section (Theo-
rem 4.60), we shall characterize the Banach lattices that are bands in their
double duals. Also, it should be noted that in a Banach lattice with order
continuous norm the solid hull of a weakly relatively compact set need not be
weakly relatively compact and that the converse of part (2) of Theorem 4.39
is false; see Exercises 11 and 12 at the end of this section.

We now turn our attention to weak∗ convergence. The next technical
result is due to D. H. Fremlin [64] and is similar to Theorem 4.36.

Theorem 4.40 (Fremlin). Let E be a normed Riesz space, and let A be
a norm bounded subset of E′. Then for a vector x ∈ E+ the following
statements are equivalent.

(1) Every disjoint sequence of [0, x] converges uniformly to zero on A.

(2) For each ε > 0 there exists some 0 ≤ y′ ∈ E′ lying in the ideal
generated by A such that

(
|x′| − y′

)+(x) < ε

holds for all x′ ∈ A.
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Proof. (1) =⇒ (2) For each u ∈ E, let

ρ(u) = sup
{
|x′|(|u|) : x′ ∈ A

}
= sup

{
x′(y) : x′ ∈ A and |y| ≤ |u|

}
.

Since A is norm bounded, ρ(u) ∈ R holds for each u ∈ E, and clearly ρ is
a lattice seminorm on E. On the other hand, if {xn} is a disjoint sequence
of [0, x], then lim ρ(xn) = 0 holds. To see this, let δ > 0. For each n
choose x′

n ∈ A and |yn| ≤ xn with ρ(xn) < δ + x′
n(yn). Since {y+

n } and
{y−n } are both disjoint sequences of [0, x], it follows from our hypothesis
that limx′

n(yn) = 0, and so lim sup ρ(xn) ≤ δ holds for all δ > 0. Therefore,
lim ρ(xn) = 0. Hence, by Theorem 4.13, we have the following property:

If 0 ≤ yn ↑≤ x holds in E, then {yn} is a ρ-Cauchy sequence. (�)

Now pick some r > 0 such that ‖x′‖ < r holds for all x′ ∈ A, and assume
by way of contradiction that (2) is false. Then there exists some ε > 0 such
that for each y′ in the ideal generated by A there exists some x′ ∈ A such
that (|x′| − y′)+(x) > 2ε. In particular, there exists a sequence {x′

n} ⊆ A

satisfying
(
|x′

n+1| − 2n
∑n

i=1 |x′
i|
)+(x) > 2ε. For each n pick some yn ∈ [0, x]

with
(
|x′

n+1| − 2n
∑n

i=1 |x′
i|
)+(yn) > 2ε, and note that

|x′
i|(yn) ≤ 2−nr‖x‖ for i = 1, . . . , n (†)

and ∣∣x′
n+1

∣∣(yn) > 2ε for all n . (��)

Next, for each k and n put vn,k =
∨n+k

i=n yi, and note that 0 ≤ vn,k ↑k ≤ x
holds. By (�), for each n there exists some kn satisfying

ρ
(
vn,k − vn,kn

)
< 2−nε for all k ≥ kn .

Since k ≥ m ≥ n implies (ym − vn,kn)+ ≤ (vn,k − vn,kn)+, it follows from the
preceding inequality that for m ≥ n we have∣∣x′

n+1

∣∣((ym − vn,kn)+
)
≤ ρ
(
(ym − vn,kn)+

)
< 2−nε . (� � �)

Now let wn =
∧n

i=1 vi,ki . From (yn −wn)+ ≤
∑n

i=1(yn − vi,ki)
+, (��), and

(� � �), we see that∣∣x′
n+1

∣∣(wn) ≥
∣∣x′

n+1

∣∣(yn) −
∣∣x′

n+1

∣∣((yn −wn)+
)

≥ 2ε −
n∑

i=1

∣∣x′
n+1

∣∣((yn − vi,ki)
+
)
≥ 2ε −

n∑
i=1

2−iε > ε .

Also, from (†) we have

∣∣x′
n+1

∣∣(wn+1) ≤
∣∣x′

n+1

∣∣(vn+1,kn+1) ≤
∞∑

i=n+1

∣∣x′
n+1

∣∣(yi)

≤
∞∑

i=n+1

2−ir‖x‖ = 2−nr‖x‖ .
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Therefore,

ρ(wn −wn+1) ≥
∣∣x′

n+1

∣∣(wn −wn+1) ≥ ε − 2−nr‖x‖
holds for each n, which implies that {w1 −wn} is not a ρ-Cauchy sequence.
However, in view of 0 ≤ w1 −wn ↑≤ x, the latter contradicts (�), and this
contradiction establishes the validity of (2).

(2) =⇒ (1) Let {xn} be a disjoint sequence of [0, x], and fix ε > 0. Pick
some 0 ≤ y′ ∈ E′ so that (2) holds. Since xn−→w 0 (why?), there exists
some k such that y′(xn) < ε holds for all n ≥ k. Therefore, for x′ ∈ A and
n ≥ k we have∣∣x′(xn)

∣∣ ≤ |x′|(xn) =
(
|x′| ∧ y′

)
(xn) + (|x′| − y′)+(xn)

≤ y′(xn) + (|x′| − y′)+(x) < ε + ε = 2ε ,

and this shows that {xn} converges uniformly to zero on A.

With the help of the preceding theorem, we are now in a position to
present A. Grothendieck’s [72] classical characterizations of the weakly com-
pact subsets in the dual of an AM -space with unit.

Theorem 4.41 (Grothendieck). Let E be an AM -space with unit. Then
for a norm bounded subset A of E′, the following statements are equivalent.

(1) A is weakly relatively compact.
(2) Every norm bounded disjoint sequence of E converges uniformly to

zero on A.
(3) For each ε > 0 there exists some y′ ≥ 0 satisfying∥∥(|x′| − y′)+

∥∥ < ε

for all x′ ∈ A.

Proof. (1) =⇒ (2) Let e be the unit of E, and let {xn} be a norm bounded
disjoint sequence of E. Since [−e, e] is the closed unit ball of E, we see
that {xn} is an order bounded disjoint sequence of E′′. By part (2) of
Theorem 4.38, the sequence {xn} converges uniformly to zero on A.

(2) =⇒ (3) Clearly, every disjoint sequence of [0, e] converges uniformly
to zero on A. Therefore, by Theorem 4.40, for each ε > 0 there exists some
y′ ≥ 0 in the ideal generated by A satisfying∥∥(|x′| − y′)+

∥∥ =
(
|x′| − y′

)+(e) < ε

for all x′ ∈ A.

(3) =⇒ (1) Let ε > 0. Pick some 0 ≤ y′ ∈ E′ satisfying ‖(|x′| − y′)+‖<ε
for each x′ ∈ A. From |x′| = |x′| ∧y′ +(|x′| − y′)+ ∈ [0, y′]+ εU ′, we see that

A ⊆ [−y′, y′] + εU ′ .
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Now note that E′ (as an AL-space) has order continuous norm. This implies
that [−y′, y′] is a weakly compact subset of E′, and so from A ⊆ [−y′, y′]+εU ′

and Theorem 3.44 we see that A is weakly relatively compact.

It is interesting to know that the w∗-convergent sequences satisfy
the equivalent conditions of Theorem 4.40. This useful result is due to
O. Burkinshaw [48].

Theorem 4.42 (Burkinshaw). Let E be a Dedekind σ-complete normed
Riesz space. If a sequence {x′

n} of E′ is w∗-convergent, then for each x ∈ E+

and each ε > 0 there exists some 0 ≤ y′ ∈ E′ in the ideal generated by {x′
n}

such that for each n we have(
|x′

n| − y′
)+(x) < ε .

Proof. For the discussion below, the symbol
∑∞

n=1 xn stands for the supre-
mum sup

{∑n
i=1 xi : n = 1, 2, . . .

}
. The proof is based upon the following

property:

• If {un} ⊆ E+ satisfies
∑∞

n=1 un ≤ u, then for each 0 ≤ f ∈ E′

and each ε > 0, there exists a subsequence {vn} of {un} (depending
upon f and ε) such that the vector v =

∑∞
n=1 vn satisfies f(v) < ε.

The proof of the above property goes as follows: Fix a countable par-
tition {Nn} of the set of natural numbers N, with each Nn infinite, and
let wn =

∑
i∈Nn

ui. Since Ni ∩ Nj = �© holds for i �= j, it follows that
0 ≤
∑n

i=1 wi ≤
∑∞

i=1 ui ≤ u for all n. Thus,
∑∞

i=1 f(wi) ≤ f(u) < ∞, and
hence f(wi) < ε holds for some i. For this index i write Ni = {k1, k2, . . .}
with kn ↑, put vn = ukn , and note that the vector v =

∑∞
n=1 vn = wi

satisfies f(v) < ε.
According to Theorem 4.40, we need to show that each disjoint sequence

of [0, x] converges uniformly to zero on {x′
n}. Without loss of generality we

can suppose that x′
n−→w

∗
0.

To establish this, assume by way of contradiction that there exist some
x ∈ E+ and a disjoint sequence {xn} of [0, x] which does not converge
uniformly to zero on {x′

n}. Thus, we assume that there exists an ε > 0
such that for each n there exists some m > n satisfying |x′

i(xm)| > 3ε for
at least one i. We claim that there exist a subsequence {wn} of {xn} and a
subsequence {gn} of {x′

n} satisfying∣∣gn(wn)
∣∣ > 3ε

for all n.
The existence of {wn} and {gn} can be proved by induction as follows:

Put k1 = 1, and then choose some m1 with |x′
m1

(xk1)| > 3ε. Next, as-
sume that k1 < · · · < kn and m1 < · · · < mn have been selected so that
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|x′
mi

(xki)| > 3ε holds for each i = 1, . . . , n. Since lim f(xk) = 0 holds in R

for each f ∈ E′, there exists some j > kn satisfying |x′
i(xk)| < ε for all k > j

and each i = 1, . . . , mn. Then there exists some kn+1 > j > kn and some
mn+1 with |x′

mn+1
(xkn+1)| > 3ε. Clearly, mn+1 > mn, and the induction

is complete. Now put wn = xkn and gn = x′
mn

. Note that gn−→w
∗

0 and∑∞
n=1 wn ≤ x.

Next, we shall construct subsequences {xk
1, x

k
2, . . .}, k = 1, 2, . . ., of {wn}

and positive integers n1 < n2 < · · · such that for each k ≥ 2 we have

(1) {xk
n} is a subsequence of {xk−1

n },
(2) The vector wnk

is a member of {xk−1
n },

(3)
∑k−1

i=1 |gnk
(wni)| < ε, and

(4) |gnk
|(uk) < ε, where uk =

∑∞
n=1x

k
n.

We start by letting x0
n = wn for each n. For this construction we use

induction on k. For k = 1, apply property (•) at the beginning of the proof
to {wn}; extract a subsequence {x1

n} of {wn} with u1 =
∑∞

n=1 x1
n satisfying

|g1|(u1) < ε, and put n1 = 1. Now assume that {xk
n} and nk have been

selected satisfying properties (1)–(4). Since limn→∞ gn(wi) = 0 holds for
each i = 1, . . . , nk, there exists some nk+1 > nk with

∑k
i=1 |gnk+1

(wi)| < ε

and with wnk+1
a member of {xk

n}. By property (•) at the beginning of
the proof, there exists a subsequence {xk+1

n } of {xk
n} with |gnk+1

|(uk+1) < ε,
and the induction is complete.

Now let w =
∑∞

i=1 wni . Then for each k we have

0 ≤ w =
k∑

i=1

wni +
∞∑

i=k+1

wni ≤
k∑

i=1

wni + uk ,

and hence |gnk
|
(
w−
∑k

i=1 wni

)
≤ |gnk

|(uk) < ε holds for all k. Thus,

|gnk
(w)| ≥ |gnk

(wnk
)| −
∣∣∣gnk

(k−1∑
i=1

wni

)∣∣∣−
∣∣∣gnk

(
w−

k∑
i=1

wni

)∣∣∣
> 3ε − ε − ε = ε > 0

holds for all k ≥ 2. However, this contradicts limk→∞ gnk
(w) = 0, and the

proof is finished.

We now come to a useful property of w∗-convergent sequences.

Theorem 4.43. Let E be a Dedekind σ-complete normed Riesz space, and
let A denote the ideal generated by E in E′′. Then a sequence {x′

n} ⊆ E′

satisfies x′
n−→w

∗
0 if and only if x′

n−→
σ(E′,A) 0.
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Proof. Clearly, x′
n−→σ(E′,A) 0 implies x′

n−→w
∗

0. For the converse, assume
x′

n−→w
∗

0. Let 0 ≤ x′′ ∈ A and ε > 0 be fixed. Pick some x ∈ E with
0 ≤ x′′ ≤ x, and then use Theorem 4.42 to select some 0 ≤ y′ ∈ E′ satisfying(

|x′
n| − y′

)+(x) < ε

for all n. From Theorem 3.60 we know that [0, x] ∩ E is |σ|(E′′, E′)-dense
in [0, x′′], and so there exists some u ∈ [0, x] ∩ E such that y′(|x′′−u|) < ε.
Taking into account that |x′′−u| ≤ x holds, we see that∣∣x′

n(x′′−u)
∣∣ ≤ (|x′

n| − y′
)+(|x′′−u|) + y′(|x′′−u|) < 2ε .

In view of limx′
n(u) = 0, we get lim sup |x′

n(x′′)| ≤ 2ε. Since ε > 0 is
arbitrary, the latter implies limx′

n(x′′) = 0, and so x′
n−→σ(E′,A) 0.

A Banach space X is said to be a Grothendieck space whenever
x′

n−→w
∗

0 in X ′ implies x′
n−→w 0 in X ′ (i.e., whenever weak∗ and weak

convergence of sequences in X ′ coincide).
Clearly, every reflexive Banach space is a Grothendieck space. Another

class of Grorthendieck spaces is described in the next result, which is essen-
tially due to A. Grothendieck [72].

Theorem 4.44 (Grothendieck). Every Dedekind σ-complete AM -space with
unit is a Grothendieck space.

Proof. Let E be an AM -space with unit e. If 0 ≤ x′′ ∈ E′′, then for each
0 ≤ x′ ∈ E′ we have x′′(x′) ≤ ‖x′′‖·‖x′‖ = ‖x′′‖e(x′), and so 0 ≤ x′′ ≤ ‖x′′‖e
holds in E′′. This implies that the ideal generated by E in E′′ is precisely
E′′. The rest of the proof follows from Theorem 4.43.

Corollary 4.45. Every L∞(µ)-space is a Grothendieck space.

An order projection on the dual of a Banach lattice is always continuous,
and hence weakly continuous. However, in general, it is not w∗-continuous.
Therefore, it is an interesting fact that an order projection on the dual of a
Dedekind σ-complete Banach lattice is always sequentially w∗-continuous.
This is due to H. H. Schaefer [172].

Theorem 4.46 (Schaefer). If E is a Dedekind σ-complete normed Riesz
space, then every order projection on E′ is sequentially w∗-continuous.

Proof. Let x′
n−→w

∗
0 in E′, let P be an order projection on E′, let x ∈ E+,

and let A be the ideal generated by E in E′′. Denote by P ′ : E′′ → E′′ the
adjoint order projection of P . Since 0 ≤ P ′x ≤ x, we see that P ′x ∈ A.
Therefore, by Theorem 4.43 we have

[Px′
n](x) = x′

n(P ′x) −→ 0 ,

proving that Px′
n−→w

∗
0 holds in E′.
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An immediate consequence of the preceding result is the following.

Corollary 4.47. If E is a Dedekind σ-complete Banach lattice, then every
band of E′ is w∗-sequentially complete.

Exercises

1. Show that L1[0, 1] does not have the Schur property.
2. Let E be a normed Riesz space, let A be a norm bounded subset of E′,

and let x ∈ E+. Then show that every disjoint sequence of [0, x] converges
uniformly to zero on A if and only if every disjoint sequence in the solid
hull of A converges uniformly to zero on [0, x].

3. Let E be a Banach lattice, and let A denote the ideal generated by E in
E′′. For a norm bounded subset W of E′ show that the following two
statements are equivalent:
(a) W is relatively σ(E′, A)-compact.
(b) Every order bounded disjoint sequence of E converges uniformly to

zero on W .
4. Let A be a norm bounded subset of a Banach lattice E such that its

convex solid hull is weakly sequentially complete. Then show that the
following two statements are equivalent:
(a) A is relatively weakly compact.
(b) If x′

n ↓ 0 holds in E′, then {x′
n} converges uniformly to zero on A.

5. Let E be a Dedekind σ-complete Banach lattice, and let A be the ideal
generated by E in E′′. If W ⊆ E′ is sequentially w∗-compact (i.e., if
every sequence of W has a w∗-convergent subsequence), then show that
W is relatively σ(E′, A)-compact.

6. Let E be a Dedekind σ-complete normed Riesz space. Assume that
P,P1, P2, . . . are order projections on E′ satisfying Pn ↑ P . If x′

n−→w
∗

x′

holds in E′, then show that Pnx′
n−→w

∗
Px′ also holds in E′.

7. Let {xn} be a weak Cauchy sequence in a normed Riesz space E. Then
show that for each 0 ≤ x′ ∈ E′ and each ε > 0 there exists some x ∈ E+

lying in the ideal generated by {xn} satisfying x′(|xn| −x
)+

<ε for all n.
8. Generalize Theorem 4.46 as follows: If 〈E,E′〉 is a Riesz dual system

with E Dedekind σ-complete, then show that fn−→σ(E′,E) 0 in E′ implies
Pfn−→σ(E′,E) 0 for every order projection P on E′.

9. Let E = Lp[0, 1] (1 ≤ p < ∞), and let {fn} ⊆ E. Then show that
fn−→w 0 holds in E if and only if lim

n→∞

∫ x

0
fn(t) dt = 0 for each x ∈ [0, 1].

10. Let E = Lp[0, 1] (1 ≤ p < ∞), {fn} ⊆ E and f ∈ E. Then show that
fn−→w f and ‖fn‖p → ‖f‖p hold if and only if lim ‖fn − f‖p = 0.

11. (Meyer-Nieberg [140]) By part (1) of Theorem 4.39 we know that a Ba-
nach lattice E has order continuous norm if and only if every weakly
relatively compact subset of E+ has a weakly relatively compact solid
hull. This exercise presents an example of a weakly relatively compact
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subset of a Banach lattice with order continuous norm whose solid hull is
not weakly relatively compact.

Let rn denote the nth Rademacher function on [0, 1]. That is, we
let rn(t) = sgn sin(2nπt). Then |rn| = 1 and rn−→w 0 holds in L1[0, 1]
(why?). Also, let E =

(
L1[0, 1] ⊕ L1[0, 1] ⊕ · · ·

)
0
.

(a) Show that E has order continuous norm.
(b) If xn = (rn, . . . , rn, 0, 0, . . .) (where the rn occupy the first n posi-

tions), then show that xn−→w 0 holds in E (and so {x1, x2, . . .} is
a weakly relatively compact subset of E).

(c) Show that {|xn|} does not have any weakly convergent subsequence
in E (and so the solid hull of {x1, x2, . . .} is not a weakly relatively
compact subset of E).

12. According to part (2) of Theorem 4.39 if a Banach lattice is a band in
its double dual, then every weakly relatively compact set has a weakly
relatively compact solid hull. Show that the converse of this statement is
false even for Banach lattices with order continuous norms. [Hint : Con-
sider the Banach lattice c0, and let W be a weakly relatively compact
subset of c0. Since c0 is an AM -space, it follows (from Theorem 4.31)
that |W | is also a weakly relatively compact set. Now use the iden-
tity Sol (W ) = Sol (|W |) and part (1) of Theorem 4.39 to conclude that
Sol (W ) is likewise weakly relatively compact. Now note that c0 is not a
band in its double dual. ]

13. Assume that E is a Dedekind σ-complete Riesz space. Fix 0 ≤ f ∈ E∼
c ,

and consider the function df : E × E → R defined by

df (x, y) = f
(
|x− y|

)
.

Show that:
(a) (Cf , df ) is a metric space.
(b) For each 0 ≤ u ∈ Cf the metric space

(
[0, u], df

)
is complete.

[Hint : For (2) assume that {xn} ⊆ [0, u] satisfies f
(
|xn+1 −xn|

)
< 2−n

for all n. Let x = lim sup xn

(
=
∧∞

n=1

∨∞
k=n xk

)
. Put yn =

∨∞
k=n xk and

note that yn ↓ x. From

∣∣∣
n+m∨
k=n

xk − xn

∣∣∣ ≤
n+m∨
k=n

∣∣xk −xn

∣∣ ≤
n+m∑
i=n

|xi+1 −xi|

and the σ-order continuity of f , it follows that f
(
|yn −xn|

)
≤ 21−n. Now

note that

0 ≤ f
(
|x−xn|

)
≤ f
(
|x− yn|

)
+ f
(
|yn −xn|

)
→ 0 . ]

14. This exercise presents an elementary proof (due to M. Nakamura [146])
of the following important consequence of Theorem 4.46:

• If E is a Dedekind σ-complete Banach lattice and if a sequence {fn}
in E∼

n satisfies fn−→w
∗

f in E′, then f ∈ E∼
n .

To see this, assume xα ↓ 0 in E. Prove that lim f(xα) = 0 by following
the steps below. Let ε > 0 be fixed.
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(a) The sequence {fn} is norm bounded, and consequently the formula
g =
∑∞

n=1 2−n|fn| defines an order continuous positive linear func-
tional. This follows easily from the uniform boundedness principle.

(b) The null ideal Ng of g is a projection band.
Since Ng is a band, it is enough to show that Cg = Nd

g is a
projection band. Let u ∈ E+. Pick a sequence {vn} ⊆ [0, u] ∩ Cg

with vn ↑ and lim g(vn) = sup g
(
[0, u] ∩ Cg

)
. If vn ↑ v holds in E,

then g(v) = sup g
(
[0, u] ∩ Cg

)
holds. Now an easy argument shows

that v = sup[0, u] ∩ Cg in E, proving that Cg is a projection band.
(c) We can assume that 0 ≤ xα ≤ x holds for all α. Denote by y

the projection of x onto Cg, and consider the complete metric space(
[0, y], dg

)
determined by g as in the previous exercise. Then each fn

restricted to
(
[0, y], dg

)
is continuous. Note that for each u, v ∈ [0, y]

we have
∣∣fn(u)− fn(v)

∣∣ ≤ |fn|
(
|u− v|

)
≤ 2ng

(
|u− v|

)
= 2ndg(u, v) .

(d) If Kn =
{
u ∈ [0, y] : |fn(u)− fk(u)| ≤ ε for all k ≥ n

}
, then some

Kn has an interior point.
By (c), each Kn is closed. Also, [0, y] =

⋃∞
n=1 Kn. Now apply

Baire’s category theorem.
(e) Assume that B(u, r) =

{
v ∈ [0, y] : g

(
|u− v|

)
< r
}
⊆ Km holds for

some m. Then z ∈ [0, y] and g(z) < r imply |f(z)| ≤ |fm(z)| + 2ε.
Put v = u ∧ (y− z), w = z + v, and note that v, w ∈ B(u, r).

Therefore, for each n ≥ m we have
∣∣fn(z)

∣∣− ∣∣fm(z)
∣∣ ≤

∣∣fn(z) − fm(z)
∣∣

≤
∣∣fn(v)− fm(v)

∣∣+ ∣∣fn(w)− fm(w)
∣∣ ≤ 2ε ,

and the desired inequality follows from fn(z) → f(z).
(f) There exists some α0 satisfying |f(xα)| ≤ 3ε for all α � α0.

Replacing each xα by its projection onto Cg, we can assume that
0 ≤ xα ≤ y holds for each α (why?). Since g is order continuous,
there exists some α1 satisfying g(xα) < r for all α � α1. Also,
since fm is order continuous, there exists some α0 � α1 satisfying
|fm(xα)| < ε for all α � α0. By (e) we see that |f(xα)| ≤ 3ε holds
for all α � α0.

15. Let E be an AL- or AM -space. If xn−→w 0 holds in E, then show that
{xn} converges uniformly to zero on every weakly compact subset of E′.

4.3. Embedding Banach Spaces

An operator T : X → Y between two Banach spaces is said to be an em-
bedding whenever there exist two positive constants K and M satisfying

K‖x‖ ≤
∥∥T (x)

∥∥ ≤ M‖x‖
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for all x ∈ X. In this case, T (X) is, of course, a closed vector subspace of
Y that can be identified with X. (The Banach space T (X) is also called
a copy of X in Y .) A Banach space X is said to be embeddable into
another Banach space Y (or simply that X embeds into Y ) whenever there
exists an embedding from X to Y .

When an embedding T : E → F between two Banach lattices is also a
lattice homomorphism, then T is called a lattice embedding. In this case
T (E) is a closed Riesz subspace of F which can be identified with E. A
Banach lattice E is said to be lattice embeddable into another Banach
lattice F whenever there exists a lattice embedding from E into F .

All Banach spaces are assumed to be real vector spaces. As usual, c0,
�1, and �∞ denote the Banach lattices of all sequences converging to zero,
all absolutely summable sequences, and all bounded sequences, respectively.
Also, en will denote the sequence of real numbers whose nth term is one and
the rest are zero, i.e.,

en := (0, 0, . . . , 0, 1, 0, 0, . . .) .

For our discussion we shall need the concept of a basic sequence. A
sequence {xn} in a Banach space is said to be a Schauder basis (or simply
a basis) whenever for each x ∈ X there exists a unique sequence {αn} of
scalars satisfying x =

∑∞
n=1αnxn (where, as usual the convergence of the

series is assumed to be in the norm). If a sequence {xn} in a Banach space
is a basis for the closed vector subspace it generates, then {xn} is referred
to as a basic sequence.

The sequences that are basic are characterized as follows.

Theorem 4.48. A sequence {xn} in a Banach space is a basic sequence if
and only if

(a) xn �= 0 holds for all n, and

(b) there exists some constant M > 0 such that for any m > n and any
choice of scalars α1, . . . , αn, . . . , αm we have

∥∥∥
n∑

i=1

αixi

∥∥∥ ≤ M
∥∥∥

m∑
i=1

αixi

∥∥∥ .

Proof. Let X be a Banach space. Assume first that {xn} is a basic sequence
of X. Without loss of generality we can also assume that the closed vector
subspace generated by {xn} is X itself. Clearly, xn �= 0 holds for all n. On
the other hand, if for each x =

∑∞
n=1αnxn we put

|||x||| = sup
{∥∥∥

n∑
i=1

αixi

∥∥∥ : n = 1, 2, . . .
}

,
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then it is a routine matter to verify that ||| · ||| is a norm on X under which
X is a Banach space. Clearly, ‖x‖ ≤ |||x||| holds for each x, and so by the
open mapping theorem there exists some M > 0 such that |||x||| ≤ M‖x‖
also holds for all x ∈ X. In particular, note that for m > n we have

∥∥∥
n∑

i=1

αixi

∥∥∥ ≤
∣∣∣
∣∣∣
∣∣∣

m∑
i=1

αixi

∣∣∣
∣∣∣
∣∣∣ ≤ M

∥∥∥
m∑

i=1

αixi

∥∥∥ .

For the converse, assume that (a) and (b) hold. Then it is easy to see
that each x ∈ X can be written in at most one way in the form

∑∞
n=1 αnxn.

On the other hand, using (b) it is easy to see that the vector subspace
{

x ∈ X : ∃ {αn} with x =
∞∑

n=1

αnxn

}

is closed, and hence it must coincide with the closed vector subspace gener-
ated by {xn}. That is, {xn} is a basic sequence, as desired.

Let {xn} be a basic sequence in a Banach space X. Then a sequence
{yn} in another Banach space Y is said to be equivalent to {xn} whenever
there exist two positive constants K and M such that for every choice of
scalars α1, . . . , αn we have

K
∥∥∥

n∑
i=1

αixi

∥∥∥ ≤
∥∥∥

n∑
i=1

αiyi

∥∥∥ ≤ M
∥∥∥

n∑
i=1

αixi

∥∥∥ .

From Theorem 4.48 it is easy to see that {yn} is also a basic sequence.
Moreover, in this case, an easy application of the closed graph theorem
shows that the formula

T
( ∞∑

n=1

αnxn

)
=

∞∑
n=1

αnyn

defines an invertible continuous operator from the closed vector subspace
generated by {xn} onto the closed vector subspace generated by {yn}.

It is not difficult to verify that {en} is a basis for c0 (and for each �p, with
1 ≤ p < ∞). Therefore, saying that c0 is embeddable in a Banach space X
is the same thing as saying that X has a sequence that is equivalent to the
basis {en} of c0. Similarly, �p (1 ≤ p < ∞) is embeddable in a Banach space
X if and only if X has a sequence equivalent to the (standard) basis {en}
of �p.

The embeddability of c0 into a Banach space has been characterized by
C. Bessaga and A. Pelczynski [32] as follows.

Theorem 4.49 (Bessaga–Pelczynski). For a Banach space X the following
statements are equivalent:
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(1) c0 is embeddable in X.

(2) There is a sequence {xn} of X such that the series
∑∞

n=1xn does not
converge in norm and for each x′ ∈ X ′ we have

∑∞
n=1|x′(xn)| < ∞.

(3) There exists a sequence {xn} of X and two positive constants K
and M such that xn−→w 0, ‖xn‖ ≥ K for all n, and for every
choice of scalars α1, . . . , αn we have

∥∥∥
n∑

i=1

αixi

∥∥∥ ≤ M max
1≤i≤n

|αi| .

(4) There exist a sequence {xn} of X (where each xn also can be taken
to be a unit vector) and two constants K, M > 0 such that for every
n and every choice of scalars α1, . . . , αn we have

K max
1≤i≤n

|αi| ≤
∥∥∥

n∑
i=1

αixi

∥∥∥ ≤ M max
1≤i≤n

|αi| .

Proof. (1) =⇒ (2) Let T : c0 → X be an embedding, and let xn = T (en).
Since

∑∞
n=1 en is not norm convergent in c0, we see that

∑∞
n=1xn does not

converge in norm. On the other hand, if T ′ : X ′ → �1 denotes the adjoint
of T , then for each x′ ∈ X ′ we have

∞∑
n=1

|x′(xn)| =
∞∑

n=1

|x′(Ten)| =
∞∑

n=1

|T ′x′(en)| = ‖T ′x′‖1 < ∞ .

(2) =⇒ (3) Let {xn} be a sequence of X satisfying the properties of (2).
Since the series

∑∞
n=1xn is not norm convergent, it is easy to see that there

exist some ε > 0 and a strictly increasing sequence {kn} of natural numbers
satisfying

∥∥∑k2n+1

i=k2n
xi

∥∥ ≥ ε for all n. Put yn = xk2n + · · · + xk2n+1 , and note
that ‖yn|| ≥ ε. Moreover, if x′ ∈ X ′, then

∞∑
n=1

|x′(yn)| ≤
∞∑

n=1

|x′(xn)| < ∞

holds. It now follows that x′(yn) → 0, and so yn−→w 0.
Now, an easy application of the uniform boundedness principle shows

that there exists some M > 0 satisfying
∑∞

n=1|x′(yn)| ≤ M‖x′‖ for all
x′ ∈ X ′. Thus, if α1, . . . , αn are arbitrary scalars, then

∥∥∥
n∑

i=1

αiyi

∥∥∥ = sup
{∣∣∣

n∑
i=1

αix
′(yi)
∣∣∣ : ‖x′‖ ≤ 1

}

≤ sup
{ n∑

i=1

|x′(yi)| : ‖x′‖ ≤ 1
}
· max
1≤i≤n

|αi|

≤ M max
1≤i≤n

|αi| ,

and so the sequence {yn} satisfies the properties of (3).
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(3) =⇒ (4) Let {xn} satisfy the properties of (3). Replacing xn by
xn/‖xn‖, we can assume without loss of generality that ‖xn‖ = 1 holds
for all n. Let εn = 1

2n .
We claim that there exists a subsequence {xkn} of {xn} such that for

each scalar α and each y in the vector subspace generated by {xk1 , . . . , xkn}
we have

‖y‖ ≤ (1 + 2εn)‖y + αxkn+1‖ . (�)

The proof is by induction. Start with k1 = 1, and assume that xk1 , . . . , xkn

have been chosen to satisfy (�). Let Y denote the vector subspace generated
by {xk1 , . . . , xkn}. Pick unit vectors y1, . . . , ym ∈ Y such that for each unit
vector y ∈ Y there exists some 1 ≤ i ≤ m with ‖y − yi‖ < εn

2 . Also, for
each 1 ≤ i ≤ m fix some y′i ∈ X ′ with ‖y′i‖ = 1 and y′i(yi) = 1. Since
xn−→w 0 holds, there exists some kn+1 > kn with |y′i(xkn+1) < εn

4 for each
i = 1, . . . , m. Then we claim that

(1 + 2εn)‖y +αxkn+1‖ ≥ 1 (��)

holds for each y ∈ Y with ‖y‖ = 1 and all scalars α. To see this, let α be a
scalar, and let y be a unit vector of Y . For |α| ≥ 2 we have

(1 + 2εn)‖y +αxkn+1‖ ≥ (1 + 2εn)
(
‖αxkn+1‖−‖y‖

)
≥ 1 ,

and on the other hand, if |α| < 2, then pick 1 ≤ i ≤ m with ‖y− yi‖ < εn
2 ,

and note that

(1 + 2εn)‖y +αxkn+1‖ ≥ (1 + 2εn)
[
‖yi + αxkn+1‖− εn

2

]
≥ (1 + 2εn)

[
|y′i(yi +αxkn+1)| − εn

2

]
≥ (1 + 2εn)

[
1− |αy′i(xkn+1)| − εn

2

]
≥ (1 + 2εn)

[
1− εn

2 − εn
2

]
≥ 1 .

For y = 0 the inequality (�) is trivial. For nonzero y ∈ Y , the validity of (�)
follows from (��) by replacing y with y/‖y‖ and α with α/‖y‖.

Now for simplicity put zn = xkn . Using (�), we see that for any choice
of scalars α1, . . . , αn, . . . , am we have

∥∥∥
n∑

i=1

αizi

∥∥∥ ≤ (1 + 2εn) · · · (1 + 2εm)
∥∥∥

m∑
i=1

αizi

∥∥∥

≤ e2(εn+···+εm)
∥∥∥

m∑
i=1

αizi

∥∥∥ ≤ e2
∥∥∥

m∑
i=1

αizi

∥∥∥ .
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Thus, if α1, . . . , αn are arbitrary scalars, then from

|αi| = ‖αizi‖ =
∥∥∥

i∑
k=1

αkzk −
i−1∑
k=1

αkzk

∥∥∥ ≤ 2e2
∥∥∥

n∑
i=1

αizi

∥∥∥ ,

it follows that

1
2e−2 max

1≤i≤n
|αi| ≤

∥∥∥
n∑

i=1

αizi

∥∥∥ ≤ M max
1≤i≤n

|αi| ,

and so the sequence {zn} satisfies (4).

(4) =⇒ (1) If (α1, α2, . . .) ∈ c0, then for m > n we have

∥∥∥
m∑

i=n

αixi

∥∥∥ ≤ M max
n≤i≤m

|αi| .

This implies that
∑∞

n=1 αnxn is norm convergent in X. In addition, if
T : c0 → X is defined by T (α1, α2, . . .) =

∑∞
n=1 αnxn, then it is easy to

see that

K‖(α1, α2, . . .)‖∞ ≤ ‖T (α1, α2, . . .)‖ ≤ M‖(α1, α2, . . .)‖∞

holds for all (α1, α2, . . .) ∈ c0. This shows that c0 is embeddable in X.
Finally, replacing each xn by xn/‖xn‖, it is not difficult to see that we can
assume that each xn is a unit vector, and the proof is finished.

It should be noted that statement (4) of the preceding theorem merely
says that the sequence {xn} is equivalent to the standard basis of c0.

The lattice embeddability of c0 is characterized as follows.

Theorem 4.50. The Banach lattice c0 is lattice embeddable in a Banach
lattice E if and only if there exists a disjoint sequence {xn} of E+ such
that

(a) {xn} does not converge in norm to zero, and

(b) the sequence of partial sums of {xn} is norm bounded, i.e., there
exists some M > 0 satisfying

∥∥∑n
i=1 xi

∣∣| ≤ M for all n.

Proof. If T : c0 → E is a lattice embedding, then the vectors xn = T (en)
satisfy the desired properties.

For the converse, let {xn} be a disjoint sequence of E+ satisfying (a)
and (b). By passing to a subsequence, we can assume that ‖xn‖ ≥ K holds
for all n and some K > 0. Now if α1, . . . , αn are arbitrary constants, then
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the inequalities

K|αi| ≤ |αi| · ‖xi‖ ≤
∥∥∥

n∑
i=1

|αi|xi

∥∥∥ =
∥∥∥

n∑
i=1

αixi

∥∥∥

≤ max
1≤i≤n

|αi| ·
∥∥∥

n∑
i=1

xi

∥∥∥
≤ M max

1≤i≤n
|αi|

imply

K max
1≤i≤n

|αi| ≤
∥∥∥

n∑
i=1

αixi

∥∥∥ ≤ M max
1≤i≤n

|αi| .

Therefore, if we define T : c0 → E by T (α1, α2, . . .) =
∑∞

n=1αnxn, then T is
an embedding of c0 into E. Moreover, we have

∣∣∑k
n=1αnxn

∣∣ =∑k
n=1|αn|xn,

and by taking norm limits we see that

∣∣T (α1, α2, . . .)
∣∣ =
∣∣∣

∞∑
n=1

αnxn

∣∣∣ =
∞∑

n=1

|αn|xn = T
(
|α1|, |α2|, . . .

)
.

Therefore, T is a lattice embedding, as desired.

Next, we shall consider lattice embeddings of �∞. The first result of this
kind characterizes the lattice embeddings of �∞ into Dedekind σ-complete
Banach lattices. It is due to G. Ya. Lozanovsky and A. A. Mekler [124] and
P. Meyer-Nieberg [141].

Theorem 4.51 (Lozanovsky–Mekler–Meyer-Nieberg). For an arbitrary De-
dekind σ-complete Banach lattice E the following statements are equivalent.

(1) �∞ is lattice embeddable in E.

(2) E does not have order continuous norm.

(3) There exists an order bounded disjoint sequence of E+ that does
not converge in norm to zero.

Proof. (1) =⇒ (2) To see this, combine the fact that �∞ does not have
order continuous norm with the following simple statement: If a Banach
lattice has order continuous norm, then its Banach sublattices also have
order continuous norms.

(2) =⇒ (3) This follows immediately from Theorem 4.14.

(3) =⇒ (1) Let {xn} be an order bounded disjoint sequence of E+ sat-
isfying ‖xn‖ ≥ K for all n and some K > 0. Assume that 0 ≤ xn ≤ x holds
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for all n. Now for each fixed 0 ≤ α = (α1, α2, . . .) ∈ �∞ we have

0 ≤
n∑

i=1

αixi ↑≤ ‖α‖∞x ,

and so by the Dedekind σ-completeness of E the sequence of partial sums
of {αnxn} has a supremum in E. Let

∑n
i=1αixi ↑ T (α1, α2, . . .). Clearly,

T : �+
∞ → E+ is additive, and so by Theorem 1.10 the mapping T extends

uniquely to a positive operator from �∞ to E. Since α ∧ β = 0 implies

T (α) ∧ T (β) =
[
sup
{ n∑

i=1

αixi

}]
∧
[
sup
{ n∑

j=1

βjxj

}]

= sup
{ n∑

i=1

(αi ∧ βi)xi

}
= 0 ,

it follows that T : �∞ → E is also a lattice homomorphism.
Finally, note that if α = (α1, α2, . . .) ∈ �∞, then

K|αn| ≤ |αn| · ‖xn‖ ≤ ‖T (|α|)‖ ≤ ‖x‖ · ‖α‖∞
holds for all n. Hence,

K‖α‖∞ ≤
∥∥T (α)

∥∥ ≤ ‖x‖ · ‖α‖∞
holds for each α ∈ �∞, and so T : �∞ → E is a lattice embedding.

A useful consequence of the preceding result is the following.

Corollary 4.52. Every separable Dedekind σ-complete Banach lattice has
order continuous norm.

Proof. If �∞ is embeddable in a Banach lattice E, then its copy in E must
be nonseparable, which is a contradiction. Hence, �∞ is not lattice embed-
dable in E, and so, by Theorem 4.51, the Banach lattice E must have order
continuous norm.

The Dedekind σ-completeness is essential for the above result. For in-
stance, C[0, 1] with the sup norm is separable, but the sup norm on C[0, 1]
is not order continuous.

The lattice embeddability of �∞ is connected with an important topo-
logical property of Banach spaces known as property (u). This property was
introduced by A. Pelczynski in [161].

Definition 4.53 (Pelczynski). A weak Cauchy sequence {xn} in a Banach
space X is said to satisfy property (u) whenever there exists a sequence
{yn} of X such that

(a)
∑∞

n=1 |x′(yn)| < ∞ holds for all x′ ∈ X ′; and
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(b) xn −
∑n

i=1 yi−→w 0.

If every weak Cauchy sequence in a Banach space X satisfies prop-
erty (u), then X itself is said to have property (u).

A. Pelczynski [161] has shown that property (u) is “hereditary,” that is,
it is inherited by closed vector subspaces.

Theorem 4.54 (Pelczynski). If a Banach space X has property (u), then
every closed subspace of X also has property (u).

Proof. Let Y be a closed vector subspace of a Banach space X with prop-
erty (u), and let {yn} be a weak Cauchy sequence of Y . Clearly, {yn} is a
weak Cauchy sequence of X, and so there exists a sequence {xn} of X such
that

(a)
∑∞

n=1 |x′(xn)| < ∞ holds for all x′ ∈ X ′, and
(b) un = yn −

∑n
i=1 xi−→w 0 in X.

According to Exercise 8 of Section 3.2, there exist 0 = k0 < k1 < · · ·
and a sequence {αn} ⊆ [0, 1] with

∑kn+1

i=kn+1αi = 1 for each n, and with the

sequence vn =
∑kn+1

i=kn+1αiui (n = 1, 2, . . .) satisfying
∑∞

n=1 ‖vn‖ < ∞. Put

wn =
∑kn+1

i=kn+1αiyi, and z1 = w1 and zn+1 = wn+1 −wn. Clearly, {zn} is a
sequence of Y , and we claim that

(1)
∑∞

n=1 |y′(zn)| < ∞ holds for all y′ ∈ Y ′, and
(2) yn −

∑n
i=1 zi−→w 0 in Y .

To see (1), note first that for each n there exist appropriate constants
cn
i (i = kn + 1, . . . , kn+2) in [0, 1] satisfying

zn+1 = wn+1 − wn = vn+1 − vn +
kn+2∑

i=kn+1

cn
i xi .

Thus, if y′ ∈ X ′, then
∞∑

n=1

|y′(zn)| ≤ 2
[
‖y′‖ ·

∞∑
n=1

‖vn‖ +
∞∑

n=1

|y′(xn)|
]

< ∞ .

To see (2), let y′ ∈ Y ′, and let ε > 0. Pick some k with |y′(yn − ym)| < ε
for all n,m > k, and note that

∣∣∣ y′
(
yn −

n∑
i=1

zi

)∣∣∣ = |y′(yn −wn)| =
∣∣∣ y′
( kn+1∑

i=kn+1

αi(yn − yi)
)∣∣∣

≤
kn+1∑

i=kn+1

αi|y′(yn − yi)| < ε

holds for all n > k, and the proof is finished.
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An important example of a Banach space without property (u) is C[0, 1].

Example 4.55. C[0, 1] and �∞ do not have property (u).
Since C[0, 1] is lattice embeddable in �∞ (for instance, if {r1, r2, . . .}

is an enumeration of the rational numbers of the interval [0, 1], then the
mapping f �→

(
f(r1), f(r2), . . .

)
is a lattice isometry from C[0, 1] into �∞),

it is enough by Theorem 4.54 to show that C[0, 1] does not have property (u).
Let {xn} be a bounded sequence of C[0, 1]. By the Riesz representation

theorem it is easy to see that {xn} is weakly Cauchy if and only if {xn}
converges pointwise to some real-valued function defined on [0, 1]. Also (by
the Riesz representation theorem again),

∑∞
n=1 |x′(xn)| < ∞ for each x′ in

the dual of C[0, 1] is equivalent to
∑∞

n=1 |xn(t)| < ∞ for all t ∈ [0, 1]. Thus,
C[0, 1] has property (u) if and only if for every function f : [0, 1] → R which
is the pointwise limit of a bounded sequence of continuous functions there
exists another sequence {fn} of C[0, 1] such that for each t ∈ [0, 1] we have

(a)
∑∞

n=1 |fn(t)| < ∞, and

(b) f(t) =
∑∞

n=1 fn(t).

Now assume that a function f : [0, 1] → R satisfies (a) and (b) above. Put
g(t) = −

∑∞
n=1 f−

n (t) and h(t) = −
∑∞

n=1 f+
n (t). Clearly, f = g − h holds.

Also, a routine argument shows that g and h are both upper semicontinuous
functions.2 Thus, by the above discussion, if C[0, 1] has property (u), then
every real-valued function on [0, 1], which is the pointwise limit of a bounded
sequence of continuous functions, must be written as a difference of two
upper semicontinuous functions.

However, W. Sierpiński [178] has constructed a real-valued function on
R which is the pointwise limit of a bounded sequence of continuous functions
and which cannot be written as a difference of two upper semicontinuous
functions. This real-valued function can also be assumed to have domain
[0, 1]. For details of Sierpiński’s construction we refer the reader to [178].

Therefore, there exists a weak Cauchy sequence in C[0, 1] that does not
satisfy property (u), and this shows that the Banach lattice C[0, 1] does not
have property (u).

In Dedekind σ-complete Banach lattices property (u) characterizes the
order continuity of the norm. The details follow.

2Recall that a function f : [0, 1] → R is said to be upper semicontinuous
whenever f−1((−∞, a)) is open in [0, 1] for all a ∈ R, or, equivalently, whenever
tn → t in [0, 1] implies lim sup f(tn) ≤ f(t).
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Theorem 4.56. For a Dedekind σ-complete Banach lattice E the following
statements are equivalent.

(1) E has order continuous norm.

(2) E has property (u).

(3) �∞ is not embeddable in E.

(4) �∞ is not lattice embeddable in E.

Proof. (1) =⇒ (2) Assume that {xn} is a weak Cauchy sequence of E.
Then xn−→w

∗
x′′ holds in E′′. Consider the element x =

∑∞
n=1 2−n|xn| ∈

E+, and let B denote the band generated by x in E′′. From Theorem 4.46,
it follows that x′′ ∈ B.

Now let vn = (x′′)+ ∧ nx and un = (x′′)− ∧ nx, n = 0, 1, 2, . . . . Since
vn, un ∈ [0, nx] and E is an ideal of E′′, we see that {vn} and {un} are both
sequences of E+. In addition, since vn ↑ (x′′)+ and un ↑ (x′′)−, we see that

vn−→w
∗

(x′′)+ and un−→w
∗

(x′′)−

holds in E′′, and so xn − (vn −un)−→w 0 holds in E. Next, for each n
put yn = (vn − vn−1) − (un −un−1) ∈ E, and note that

∑n
i=1 yi = vn −un.

Therefore, xn −
∑n

i=1 yi−→w 0 holds in E. On the other hand, if x′ ∈ E′,
then for each k we have

k∑
n=1

|x′(yn)| ≤
k∑

n=1

|x′|(vn − vn−1) +
k∑

n=1

|x′|(un −un−1)

≤ |x′|(vk) + |x′|(uk) ≤ |x′′|(|x′|) < ∞ ,

and so
∑∞

n=1 |x′(yn)| < ∞ holds for each x′ ∈ E′. Thus, E has property (u).

(2) =⇒ (3) If �∞ is embeddable in E, then (by Theorem 4.54) �∞ must
have property (u), contrary to Example 4.55.

(3) =⇒ (4) Obvious.

(4) =⇒ (1) This follows immediately from Theorem 4.51.

Remark. In the preceding theorem, the equivalence of (2) and (3)
was first obtained by G. Ya. Lozanovsky [122, 123], while (1) ⇐⇒ (4)
was established by G. Ya. Lozanovsky and A. A. Mekler [124]. The equiv-
alence (1) ⇐⇒ (4) was also proven by P. Meyer-Nieberg [141]. Results
similar to the spirit of Theorem 4.56 were also obtained by H. P. Lotz [117].
The implication (1) ⇐⇒ (2) also was established by L. Tzafriri [187] and
P. Meyer-Nieberg [140].

Theorem 4.56 has an immediate striking consequence.
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Corollary 4.57. In the class of all Dedekind σ-complete Banach lattices,
the order continuity of the norm is a Banach space property.

That is, two Dedekind σ-complete Banach lattices that are linearly
homeomorphic either both have or both do not have order continuous norms.
In contrast, this conclusion is no longer true in the general class of Banach
lattices. For instance, let c be the Banach lattice of all convergent sequences.
If for each x = (x1, x2, . . .) ∈ c we put x∞ = limxn, then

(x1, x2, . . .) �−→ (x∞, x1 −x∞, x2 −x∞, . . .)

is a linear homeomorphism from c onto c0. However, c0 has order continuous
norm while the norm of c fails to be order continuous.

We now turn our attention to the important class of KB-spaces.

Definition 4.58. A Banach lattice E is said to be a Kantorovich–Banach
space (or briefly a KB-space) whenever every increasing norm bounded
sequence of E+ is norm convergent.

Note that a Banach lattice is a KB-space if and only if 0 ≤ xα ↑ and
sup
{
‖xα‖
}

< ∞ imply that the net {xα} is norm convergent. (This easily
follows from the fact that if a net {xα} with 0 ≤ xα ↑ is not Cauchy, then
there exist some ε > 0 and a sequence {αn} of indices satisfying αn ↑ and
‖xαn+1 −xαn‖ > ε for all n.) In particular, it follows that every KB-space
has order continuous norm.

Now let {xn} be a sequence in a Banach lattice E satisfying 0 ≤ xn ↑ and
sup
{
‖xn‖
}

< ∞. Then 0 ≤ xn ↑ x′′ holds in E′′ for some x′′ ∈ E′′. In case
E is reflexive, x′′ belongs to E, and the order continuity of the norm implies
that {xn} is norm convergent. On the other hand, if E is an AL-space, then
E′′ is also an AL-space, and so E′′ has order continuous norm, from which
it follows that {xn} is norm convergent in this case too. Therefore, reflexive
Banach lattices and AL-spaces are examples of KB-spaces.

Theorem 4.59. The norm dual E′ of a Banach lattice E is a KB-space
if and only if E′ has order continuous norm.

Proof. Assume that E′ has order continuous norm and that 0 ≤ x′
n ↑ holds

in E′ with sup
{
‖x′

n‖
}

< ∞. Then x′(x) = limx′
n(x) exists in R for each

x ∈ E+, and moreover this formula defines a positive linear functional on
E. Since x′

n ↑ x′ holds in E′, we see that {x′
n} is norm convergent.

A Banach space X is said to be weakly sequentially complete when-
ever every weak Cauchy sequence of X converges weakly to some vector of
X. Clearly, a Banach space X is weakly sequentially complete if and only
if {xn} ⊆ X and xn−→w

∗
x′′ in X ′′ imply x′′ ∈ X.



4.3. Embedding Banach Spaces 233

It is not difficult to see that in c0 the elements un = (1, . . . , 1, 0, 0, . . .),
where the 1’s occupy the first n positions, form a weak Cauchy sequence that
fails to converge weakly in c0. Therefore, c0 does not embed in any weakly
sequentially complete Banach space. Remarkably, the converse is true for
Banach lattices. The details are included in the next important theorem
that characterizes the KB-spaces. The theorem is a combination of results
by many mathematicians.

Theorem 4.60. For a Banach lattice E the following statements are equiv-
alent.

(1) E is a KB-space.

(2) E is a band of E′′.

(3) E = (E′)∼n .

(4) E is weakly sequentially complete.

(5) c0 is not embeddable in E.

(6) c0 is not lattice embeddable in E.

Proof. (1) =⇒ (2) Since E has order continuous norm, it follows from The-
orem 4.9 that E is an ideal of E′′. To see that E is a band of E′′, let
0 ≤ xα ↑ x′′ hold in E′′ with {xα} ⊆ E. From ‖xα‖ ≤ ‖x′′‖ < ∞, it follows
that {xα} is a norm convergent net. If x is its norm limit, then xα ↑ x
holds in E. Since E is an ideal of E′′, we also have xα ↑ x in E′′. Thus,
x′′ = x ∈ E holds, and so E is a band of E′′.

(2) =⇒ (3) By Theorem 3.60 we know that E is |σ|(E′′, E′)-dense in
(E′)∼n , and by Theorem 3.46 the band E is |σ|(E′′, E′)-closed. Consequently,
E = (E′)∼n holds.

(3) =⇒ (4) Clearly, E is a band of E′′. Thus, by Corollary 4.47, the
Banach lattice E is w∗-sequentially complete in E′′, which means that E is
weakly sequentially complete.

(4) =⇒ (5) Let un = (1, . . . , 1, 0, 0, . . .), where the 1’s occupy the first
n positions. Then {un} is a weak Cauchy sequence of c0. Thus, in case
T : c0 → E is an embedding, {T (un)} is a weak Cauchy sequence of E, and
so by our hypothesis {T (un)} is weakly convergent in E. Since T (c0) is
a closed vector subspace of E, we see that {T (un)} is weakly convergent
in T (c0), and consequently {un} is weakly convergent in c0. On the other
hand, if un−→w u holds in c0, then clearly u = (1, 1, 1, . . .), which is not in
c0. This contradiction shows that c0 is not embeddable in E.

(5) =⇒ (6) Obvious.
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(6) =⇒ (1) Note first that E is Dedekind σ-complete. To see this, as-
sume by way of contradiction that E is not Dedekind σ-complete. Then
there exists a sequence {yn} of E satisfying 0 ≤ yn ↑≤ x for which sup{yn}
does not exist in E. In particular, {yn} is not a norm Cauchy sequence.
Therefore, by Theorem 4.13, there exists a disjoint sequence {un} ⊆ [0, x]
that is not norm convergent to zero. Since 0 ≤

∑n
i=1ui ≤ x holds for all n,

it follows from Theorem 4.50 that c0 is lattice embeddable in E, which is
impossible. Thus, E is Dedekind σ-complete.

Since c0 is a Banach sublattice of �∞, it follows that �∞ cannot be
lattice embeddable in E. Thus, by Theorem 4.51, the norm of E is order
continuous. In particular, E is an ideal of E′′.

Now let 0 ≤ xn ↑ in E satisfy sup{‖xn‖} < ∞. To finish the proof, it is
enough to show that {xn} is a norm Cauchy sequence. To this end, assume
by way of contradiction that this is not the case. Then, by passing to a
subsequence, we can assume that for some ε > 0 we have ‖xn+1 −xn‖ > 2ε
for all n. Let 0 ≤ xn ↑ x′′ hold in E′′, and then fix some positive integer
k with 2

k+3‖x′′‖ < ε. By Theorem 4.12 there exist k disjoint sequences
{y1

n}, . . . {yk
n} of [0, x′′] satisfying

y1
n + · · · + yk

n ≤ xn+1 − xn ≤ y1
n + · · · + yk

n + 2
k+3x′′

for all n. Since E is an ideal of E′′, we see that {yi
n} ⊆ E holds for each

i = 1, . . . , k. On the other hand, we have

2ε < ‖xn+1 −xn‖ ≤ ‖y1
n‖ + · · · + ‖yk

n‖ + ε ,

and so ‖y1
n‖+· · ·+‖yk

n‖ > ε holds for all n. It follows that for some 1 ≤ i ≤ k
the disjoint sequence {yi

n} ⊆ E+ is not norm convergent to zero. In view of
0 ≤
∑n

j=1y
i
j ≤ x′′, it follows that {yi

n} also has a norm bounded sequence
of partial sums. Therefore, by Theorem 4.50, c0 is lattice embeddable in E,
which is a contradiction, and the proof is finished.

Remark. As mentioned before, the preceding theorem is due to many
authors. The equivalence of (1)–(4) was established first by T. Ogasawara
(see [146]), and later they were reproved to be equivalent by M. Naka-
mura [146, 147]. The equivalence of statements (1) and (5) was proved
by G. Ya. Lozanovsky [122, 123]. Statement (6) was added to the list by
P. Meyer-Nieberg [140, 141], where he also proved the other equivalences.
Finally, L. Tzafriri [187] proved a result closely related to Theorem 4.60.

It is remarkable that c0 is embeddable in a Banach lattice if and only if
it is lattice embeddable. The next theorem is an immediate consequence of
the preceding result and shows that c0 is quite often embeddable in Banach
lattices.

Theorem 4.61. For a Banach lattice E the following are equivalent.
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(1) E is not a KB-space.

(2) c0 is embeddable in E.

(3) c0 is lattice embeddable in E.

The next result characterizes the embeddability of c0 in the completion
of a normed Riesz space.

Lemma 4.62. The Banach lattice c0 is embeddable in the norm completion
of a normed Riesz space E if and only if there exist a sequence {xn} ⊆ E+

and two positive constants K and M satisfying

K max
1≤i≤n

|αi| ≤
∥∥∥

n∑
i=1

αixi

∥∥∥ ≤ M max
1≤i≤n

|αi|

for every choice of scalars α1, . . . , αn.

Proof. The “only if” part follows from Theorem 4.49. For the “if” part
assume that c0 is embeddable in the norm completion Ê of E. Since Ê is a
Banach lattice (Theorem 4.2), it follows from Theorem 4.61 that c0 is lattice
embeddable in Ê. Thus, there exist a sequence {un} ⊆ Ê+ and two positive
constants K and M1 satisfying

2K max
1≤i≤n

|αi| ≤
∥∥∥

n∑
i=1

αiui

∥∥∥ ≤ M1 max
1≤i≤n

|αi|

for every choice of scalars α1, . . . , αn.
Now for each n pick some xn ∈ E+ with ‖un −xn‖ < 2−nK. If

α1, . . . , αn are arbitrary scalars, then note that
∥∥∥

n∑
i=1

αixi

∥∥∥ ≥
∥∥∥

n∑
i=1

αiui

∥∥∥−
∥∥∥

n∑
i=1

αi(xi −ui)
∥∥∥ ≥ K max

1≤i≤n
|αi|

and
∥∥∥

n∑
i=1

αixi

∥∥∥ ≤
∥∥∥

n∑
i=1

αi(xi −ui)
∥∥∥+
∥∥∥

n∑
i=1

αiui

∥∥∥
≤ (K + M1) max

1≤i≤n
|αi| ,

and the proof is finished.

A continuous operator T : X → Y between two Banach spaces is said
to factor through a Banach space Z whenever there exist continuous
operators

X−→S Z−→R Y

such that T = RS holds. (The operators R and S are called factors of T .)
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The next interesting result of N. Ghoussoub and W. B. Johnson [69]
deals with factorization of operators through KB-spaces.

Theorem 4.63 (Ghoussoub–Johnson). Let T : E → X be a continuous
operator from a Banach lattice E into a Banach space X. If c0 does not
embed in X, then T admits a factorization through a KB-space F

E X

F

T

Q S

with the factor Q being a lattice homomorphism.

Proof. The formula

ρ(x) = sup
{
‖Ty‖ : |y| ≤ |x|

}
, x ∈ E ,

defines a lattice seminorm on E. (To see the triangle inequality use Theo-
rem 1.13.) If N is the null ideal of ρ, i.e., N =

{
x ∈ E : ρ(x) = 0

}
, then

E/N is a normed Riesz space under the norm

|||ẋ||| = ρ(x) .

The norm completion F of E/N is a Banach lattice (Theorem 4.2).
Clearly,

‖Tx‖ ≤ |||ẋ||| ≤ ‖T‖ · ‖x‖
holds for all x ∈ X. In particular, this implies that the formula S(ẋ) = T (x)
defines a continuous operator from E/N into X. Denote again by S the
unique linear extension of S to all of F . Also, if Q : E → F is defined by
Q(x) = ẋ, then Q is a lattice homomorphism, and moreover we have the
factorization

E X

F

T

Q S

To finish the proof, it is enough to show that F is a KB-space.
If c0 is embeddable in F , then by Lemma 4.62 there exist a sequence

{un} of E+ and two constants K, M > 0 satisfying

2K max
1≤i≤n

|αi| ≤
∣∣∣
∣∣∣
∣∣∣

n∑
i=1

αiu̇i

∣∣∣
∣∣∣
∣∣∣ ≤ M max

1≤i≤n
|αi|

for every choice of scalars α1, . . . , αn. Clearly, ρ(un) = |||u̇n||| ≥ 2K. Thus,
for each n there exists some |vn| ≤ un with ‖Tvn‖ = ‖Sv̇n‖ > K. Since
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u̇n−→w 0 holds in F , it follows from |v̇n| ≤ u̇n that v̇n−→w 0 in F , and
hence Sv̇n−→w 0 holds in X. On the other hand, for every choice of scalars
α1, . . . , αn we have

∥∥∥
n∑

i=1

αiSv̇i

∥∥∥ ≤ ‖S‖ ·
∣∣∣
∣∣∣
∣∣∣

n∑
i=1

αiv̇i

∣∣∣
∣∣∣
∣∣∣ ≤ ‖S‖ ·

∣∣∣
∣∣∣
∣∣∣

n∑
i=1

|αi| · |v̇i|
∣∣∣
∣∣∣
∣∣∣

≤ ‖S‖ ·
∣∣∣
∣∣∣
∣∣∣

n∑
i=1

|αi|u̇i

∣∣∣
∣∣∣
∣∣∣ ≤ M‖S‖ max

1≤i≤n
|αi| .

Therefore, the sequence {Sv̇n} of X satisfies statement (3) of Theorem 4.49,
and so c0 is embeddable in X, which is a contradiction. Consequently, F is
a KB-space, as desired.

Recall that a closed vector subspace Y of a Banach space X is said to be
complemented (or that Y has a complement in X) whenever there exists
another closed vector subspace Z of X such that X = Y ⊕ Z. The closed
vector subspace Z is referred to as a complement of Y (and, of course, Y
is a complement of Z). By the closed graph theorem, it is easy to see that
the projection of X onto Y along Z is continuous. In fact, an easy argument
shows that a closed vector subspace Y of a Banach space X is complemented
if and only if there exists a continuous projection on X whose range is Y .
Also, recall that a Banach space Y is said to embed complementably into
another Banach space X whenever there exists an embedding T : Y → X so
that T (Y ) is complemented in X.

Regarding embeddings of Banach spaces into KB-spaces, we have the
following remarkable result of W. B. Johnson and L. Tzafriri [80].

Theorem 4.64 (Johnson–Tzafriri). If a Banach space X embeds comple-
mentably into a Banach lattice and c0 does not embed in X, then X also
embeds complementably in a KB-space.

Proof. Let Y be a complemented closed vector subspace of a Banach lattice
E, let T : X → Y be an invertible continuous operator from X onto Y , and
let P : E → E be a continuous projection with range Y . Also, let J : Y → E
denote the natural inclusion. Clearly, c0 does not embed in Y , and so, by
Theorem 4.63, the operator P : E → Y factors through a KB-space F . In
other words, we have the following scheme of operators

X Y E Y X

F

T

Q

J P

S

T−1
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with F a KB-space. We claim that QJT : X → F is an embedding whose
image is complemented in F . This claim will be established by steps.

Step 1. QJT is one-to-one.

Indeed, if QJT (x) = 0, then note that

x = [T−1PJT ](x) = [T−1SQJT ](x) = 0 .

Step 2. QJT (X) is a closed vector subspace of F , and so QJT : X → F is
an embedding .

If QJTxn → y holds in F , then we have

xn = [T−1SQJT ](xn) → T−1Sy = z ∈ X .

Now note that y = QJTz holds.

Step 3. F = QJT (X) ⊕ S−1({0}) holds, proving that QJT (X) is a com-
plemented closed vector subspace of F .

Let y ∈ F . Pick some x ∈ X with Sy = Tx. Then z = y − QJTx ∈ F
satisfies S(z) = 0, and so z ∈ S−1({0}). Now note that y = QJTx + z
holds.

To see that F is the direct sum of QJT (X) and S−1({0}), let QJTx+y=0
with y ∈ S−1({0}). Then

x = T−1SQJTx = T−1S(QJTx + y) = 0 ,

and so y = 0. This completes the proof of the theorem.

The next result is a dual of Theorem 4.63 and is also due to N. Ghoussoub
and W. B. Johnson [69].

Theorem 4.65 (Ghoussoub–Johnson). Let T : X → E be a continuous
operator from a Banach space X into a Banach lattice E. If c0 does not
embed in X ′, then T admits a factorization through a Banach lattice F

X E

F

T

S Q

such that F ′ is a KB-space and Q is an interval preserving lattice homo-
morphism.

Proof. We denote by U the closed unit ball of X. Let A be the ideal
generated by T (X) in E, and let C be the convex solid hull of T (U). Clearly,
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C is a norm bounded subset of E, and moreover C ⊆ A holds. Then the
Minkowski functional ρ of C on A, i.e.,

ρ(x) = inf{λ : x ∈ λC} , x ∈ A ,

defines a lattice norm on A. Let F be the norm completion of (A, ρ). By
Theorem 4.2, F is a Banach lattice. Since ‖x‖ ≤ ‖T‖ρ(x) holds for all x ∈ A
(why?), it follows that the natural inclusion J : (A, ρ) → E is continuous.
Thus (according to Exercise 7 of Section 4.1), J extends to a unique interval
preserving lattice homomorphism Q from F to E. Also, if S : X → F is
defined by S(x) = T (x), then (in view of S(U) = T (U) ⊆ C) the operator
S is continuous, and moreover we have the factorization

X E

F

T

S Q

We show next that F ′ is a KB-space. For this, it is enough to show that
F ′ has order continuous norm. To this end, let {fn} be a disjoint sequence
of F ′ such that 0 ≤ fn ≤ f holds for all n and some f ∈ F ′. If ρ′ denotes
the norm of F ′, then (in view of Theorem 4.14) it suffices to establish that
lim ρ′(fn) = 0. Form the inequality

ρ′(fn) = sup
{
|fn(y)| : ρ(y) ≤ 1

}
= sup

{
|fn(y)| : y ∈ C

}
≤ sup

{
fn(|Tx|) : x ∈ U

}
,

we see that for each n there exists some xn ∈ U with ρ′(fn)− 1
n < fn(|Txn|).

Also, by Theorem 1.23, for each n there exists some gn ∈ F ′ with |gn| ≤ fn

and fn(|Txn|) = gn(Txn) = gn(Sxn). Thus,

ρ′(fn) < 1
n + [S′gn](xn) ≤ 1

n + ‖S′gn‖ . (�)

Next, note that for each x′′ ∈ X ′′, we have
∞∑

n=1

|x′′(S′gn)| =
∞∑

n=1

|S′′x′′(gn)| ≤
∞∑

n=1

|S′′x′′|(|gn|) ≤ |S′′x′′|(f) < ∞ .

Since c0 does not embed in X ′, it follows from condition (2) of Theo-
rem 4.49 that

∑∞
n=1S

′gn is norm convergent in X ′. In particular, we have
lim ‖S′gn‖ = 0, and so from (�) we see that lim ρ′(fn) = 0, as desired.

We now turn our attention to embeddings of �1. Before doing so, let us
mention a few important properties of �1. Clearly, �1 is a KB-space, and
so �1 is a band in its double dual. In fact, the next theorem shows that
�′∞ = �1 ⊕ (c0)o.
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Theorem 4.66. If �d
1 denotes the disjoint complement of �1 in �′∞, then

for an element f ∈ �′∞ the following statements are equivalent:

(1) f ∈ �d
1.

(2) f(en) = 0 holds for all n.

(3) There exists a constant κ such that

f(x) = κ lim xn

holds for all x = (x1, x2, . . .) ∈ c.

Proof. (1) =⇒ (2) If x ∈ �∞ satisfies x ∧ (en −x) = 0, then it should be
clear that either x = en or x = 0. Thus, by Theorem 1.50, we have

0 = |f | ∧ en(en) = inf
{
|f |(x) + en(en −x) : x ∧ (en −x) = 0

}
= min

{
|f |(en), 1

}
.

This implies |f |(en) = 0, and so f(en) = 0 for each n.

(2) =⇒ (3) Let e = (1, 1, . . .) ∈ c. If x ∈ c, then

f(x) − f(e) lim
n→∞

xn

= f
(
x1 − lim

n→∞
xn, x2 − lim

n→∞
xn, . . .

)
f
(
0, . . . , 0, xk − lim

n→∞
xn, xk+1 − lim

n→∞
xn, . . .

)
−→0 ,

and so f(x) = f(e) limn→∞ xn holds.

(3) =⇒ (1) Put un = (1, . . . , 1, 0, 0, . . .) = e1 + · · · + en, and note that

|f |(un) = sup
{
|f(v)| : |v| ≤ un

}
= 0 .

Thus, if x = (x1, x2, . . .) ∈ �1, then

0 ≤
(
|f | ∧ |x|

)
(e) ≤ |f |(un) + |x|(e−un) =

∞∑
i=n+1

|xi|−→0

holds. Since e is an order unit for �∞, the latter shows that |f | ∧ |x| = 0
holds for all x ∈ �1. That is, f ∈ �d

1 , as required.

R. S. Phillips [164] has shown that w∗-convergence in the dual of �∞
implies uniform convergence on the closed unit ball of c0. This result is
known as Phillip’s lemma and is stated next.

Theorem 4.67 (Phillip’s Lemma). If a sequence {fn} ⊆ �′∞ satisfies
fn−→w

∗
0, then {fn} converges uniformly to zero on the closed unit ball

of c0.



4.3. Embedding Banach Spaces 241

Proof. We know that �1 is a band in �′′1 = �′∞. Therefore, we can write
fn = xn + gn with xn ∈ �1 and gn ∈ �d

1 . From Theorem 4.46 we have
xn−→w 0 in �1, and so Theorem 4.32 implies lim ‖xn‖1 = 0. Since gn(x) = 0
holds for all x ∈ c0 (see Theorem 4.66), it follows that

sup
{
|fn(x)| : x ∈ c0 and ‖x‖∞ ≤ 1

}
= sup

{
|(xn + gn)(x)| : x ∈ c0 and ‖x‖∞ ≤ 1

}
= sup

{
|xn(x)| : x ∈ c0 and ‖x‖∞ ≤ 1

}
= ‖xn‖1 −→ 0 ,

and the proof is finished.

We now continue with embeddings of �1. As previously stated, the Ba-
nach space �1 is embeddable into a Banach space X if and only if X has a
sequence that is equivalent to the standard basis {en} of �1. It is easy to
see that for this to happen it is necessary and sufficient that there exists a
sequence {xn} of X and two positive constants K and M satisfying

K
n∑

i=1

|αi| ≤
∥∥∥

n∑
i=1

αixi

∥∥∥ ≤ M
n∑

i=1

|αi|

for every n and all choices of scalars α1, . . . , αn. Note that if a sequence
{xn} in a Banach space satisfies ‖xn‖ ≤ M for all n, then

∥∥∥
n∑

i=1

αixi

∥∥∥ ≤
n∑

i=1

|αi| · ‖xi‖ ≤ M
n∑

i=1

|αi|

holds for every choice of scalars α1, . . . , αn. Therefore, �1 is embeddable in
a Banach space X if and only if there exist a norm bounded sequence {xn}
of X and a positive constant K satisfying

K

n∑
i=1

|αi| ≤
∥∥∥

n∑
i=1

αixi

∥∥∥
for every n and all choices of scalars α1, . . . , αn. In this case, an embedding
T : �1 → X is given by the formula

T (α1, α2, . . .) =
∞∑

n=1

αnxn .

Also, note that by replacing each xn by xn/‖xn‖ we can assume that each
xn is a unit vector.

It is important to observe that the standard basis {en} in �1 does not
have any weak Cauchy subsequences. Indeed, if {ekn} is a subsequence of
{en}, then consider x′ = (x1, x2, . . .) ∈ �∞ = �′1 defined by xk2n = 1 for
n = 1, 2, . . . and xi = 0 otherwise, and note that limx′(ekn) does not exist
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in R. Thus, if a sequence {xn} in a Banach space has a weak Cauchy
subsequence, then {xn} cannot be equivalent to the standard basis in �1.

C. Bessaga and A. Pelczynski [32] have shown that �1 embeds comple-
mentably in a Banach space X if and only if c0 embeds in X ′. This result
is stated next.

Theorem 4.68 (Bessaga–Pelczynski). For a Banach space X the following
statements are equivalent.

(1) �1 embeds complementably in X.
(2) �∞ embeds complementably in X ′.
(3) �∞ embeds in X ′.
(4) c0 embeds in X ′.

Proof. (1) =⇒ (2) If two closed vector subspaces Y and Z of X satisfy
X = Y ⊕ Z, then X ′ = Y ′ ⊕ Z ′ holds. So, if �1 is linearly homeomorphic to
Y , then �∞ is linearly homeomorphic to Y ′ (which is complemented in X ′).

(2) =⇒ (3) and (3) =⇒ (4) are obvious.

(4) =⇒ (1) Let T : c0 → X ′ be an embedding. Then, an easy application
of the Hahn–Banach Theorem 1.25 guarantees that T ′ : X ′′ → c′0 = �1 is
onto. Denote by S : X → �1 the restriction of T ′ on X, and note that for
each x ∈ X we have

Sx =
(
Te1(x), T e2(x), . . .

)
.

The proof will be completed by steps.

STEP 1. There exist a norm bounded sequence {xn} of X and some
M > 1 such that Sxn =

(
Te1(xn), T e2(xn), . . .

)
satisfies

(a) ‖Sxn‖1 ≤ M , and

(b)
∑n−1

i=1 |Tei(xn)| < 1
n and Ten(xn) = 1.

To see this, let U denote the closed unit ball of X, and let U1 be the
closed unit ball of �1. Since T ′ : X ′′ → �1 is onto, it follows from the open
mapping theorem that there exists some r > 0 so that U1 ⊆ rT ′(U ′′). If bar
denotes the w∗-closure in �1, then in view of the w∗-denseness of U in U ′′,
we see that U1 ⊆ S(rU). Now for each n let

Φn =
{
(α1, . . . , αn, 0, 0, . . .) : αi = ±1 for each i = 1, . . . , n

}
,

and note that Φn is a finite subset of c0. Taking into account that en ∈ U1,
we see that there exists some yn ∈ rU so that

∣∣〈α, en −S(yn)
〉∣∣ =
∣∣∣

n−1∑
i=1

αiTei(yn) + αn[1−Ten(yn)]
∣∣∣ < 1

2n
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holds for all α ∈ Φn. This implies
n−1∑
i=1

∣∣Tei(yn)
∣∣ < 1

2n and
∣∣1−Ten(yn)

∣∣ < 1
2n ≤ 1

2 .

The latter inequality implies the existence of some δn satisfying 0 < |δn| ≤ 2,
xn = δnyn and Ten(xn) = 1. Clearly,

∑n−1
i=1

∣∣Tei(xn)
∣∣ < 1

n holds. The
existence of the constant M > 0 now follows from the inequalities

‖Sxn‖1 ≤ ‖S‖ · ‖xn‖ ≤ 2r‖S‖ .

STEP 2. There exists a sequence {kn} of strictly increasing natural numbers
such that if un =

∑kn+1−1
i=kn

Tei(xkn)ei, then

‖un‖1 ≤ M and ‖Sxkn −un‖1 < (2M)−12−n−1

holds for all n.

To see this, let δ = (2M)−12−1. Pick some k1 > 1 with 1
k1

< δ2−2,
and choose k2 > k1 satisfying 1

k2
< δ2−3 and

∑∞
i=k2

|Tei(xk1)| < δ2−2. Put
u1 =

∑k2−1
i=k1

Tei(xk1)ei, and note that

‖Sxk1 −u1‖1 =
k1−1∑
i=1

|Tei(xk1)| +
∞∑

i=k2

|Tei(xk1)|

< 1
k1

+ δ2−2 < (2M)−12−2 .

Next, choose k3 > k2 with 1
k3

< δ2−4 and
∑∞

i=k3
|Tei(xk2)| < δ2−3. Put

u2 =
∑k3−1

i=k2
Tei(xk2)ei, and note that

‖Sxk2 −u2‖1 =
k2−1∑
i=1

|Tei(xk2)| +
∞∑

i=k3

|Tei(xk2)|

< 1
k2

+ δ2−3 < (2M)−12−3 .

Now continue the construction inductively in the obvious manner, and note
that

‖un‖1 ≤ ‖Sxkn‖1 ≤ M .

STEP 3. The sequence {un} is equivalent to the standard basis of �1. More-
over, if Y is the closed vector subspace generated by {un} in �1, then there
exists a continuous projection P on �1 with range Y and ‖P‖ ≤ M .

Since the knth component of un is 1 and un ∧ um = 0 for n �= m, we see
that

k∑
i=1

|αi| ≤
∥∥∥

k∑
i=1

αiui

∥∥∥
1

holds for every choice of scalars α1, . . . , αk.
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Now consider the operator P : �1 → �1 defined by

P (α1, α2, . . .) =
∞∑

n=1

αknun .

Again, since the knth component of un is 1 and un ∧ um = 0 for n �= m,
we see that the knth component of P (α1, αn, . . .) equals αkn . This easily
implies that P is a projection whose range is Y . On the other hand, the
estimate

‖P (α1, α2, . . .)‖1 ≤ M
∞∑

n=1

|αkn | ≤ M‖(α1, α2, . . .)‖1

shows that P is continuous and that ‖P‖ ≤ M .

STEP 4. The sequence {Sxkn} is equivalent to the standard basis of �1.
Moreover, if Z is the closed vector subspace generated by {Sxkn}, then the
continuous operator R : Y → Z from Y onto Z defined by

R
( ∞∑

i=1

αiui

)
=

∞∑
i=1

αiSxki

satisfies ‖R‖ ≤ 3
2 .

To see that {Sxkn} is equivalent to the standard basis of �1 note that

∥∥∥
k∑

i=1

αiSxki

∥∥∥
1

≥
∥∥∥

k∑
i=1

αiui

∥∥∥
1
−

k∑
i=1

|αi| · ‖Sxki −ui‖1

≥
k∑

i=1

|αi| − 1
2

k∑
i=1

|αi| = 1
2

k∑
i=1

|αi| .

For the norm estimate of R, observe that if u =
∑∞

n=1 αnun ∈ Y , then

‖u−Ru‖1 =
∥∥∥

∞∑
n=1

αn(un −Sxkn)
∥∥

1
≤

∞∑
n=1

[ ∞∑
i=1

|αi|
]
· 2−1−n

= 1
2

∞∑
i=1

|αi| ≤ 1
2‖u‖1 ,

and so ‖Ru‖1 ≤ 3
2‖u‖1 holds. This proves that ‖R‖ ≤ 3

2 .

STEP 5. Consider the operators �1−→P Y −→R Z. Then, the operator
RP : Z → Z is an invertible operator.
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Indeed, if z =
∑∞

n=1 αnSxkn ∈ Z, then we have

‖RPz − z‖1 =
∥∥∥RP

( ∞∑
n=1

αn(Sxkn −un)
)∥∥∥

1

≤ ‖R‖ · ‖P‖ ·
[ ∞∑

n=1

|αn|
]
·
[ ∞∑

n=1

‖Sxkn −un‖1

]

≤ 3
2M · 2‖z‖1 · (2M)−1 · 1

2 = 3
4‖z‖1 .

Thus, ‖RP − I‖ ≤ 3
4 < 1 holds, and this implies that RP : Z → Z is

invertible, where, of course, (RP )−1 =
∑∞

n=0(I −RP )n.

STEP 6. Let A : Z → Z denote the inverse of RP : Z → Z, and consider
the operators �1−→P Y −→R Z−→A Z. Then Q = ARP is a continuous
projection on �1 whose range is Z.

Clearly, ARPz = z holds for all z ∈ Z, and so

(ARP )2α = ARP (ARPα) = ARPα

holds for all α ∈ �1.

STEP 7. The sequence {xkn} is equivalent to the standard basis of �1.
Moreover, if W is the closed vector subspace generated by {xkn} in X, then
W is a complemented copy of �1 in X.

Note that
∥∥∥

k∑
i=1

αixki

∥∥∥ ≤ 2r

k∑
i=1

|αi| ≤ 4r
∥∥∥

k∑
i=1

αiSxki

∥∥∥
1
≤ 4r‖S‖ ·

∥∥∥
k∑

i=1

αixki

∥∥∥ ,

and so {xkn} is equivalent to the standard basis of �1. Moreover, for each∑∞
n=1 αnxkn ∈ W we have S

(∑∞
n=1 αnxkn

)
=
∑∞

n=1 αnSxkn . This shows
that S carries W onto Z, and that S as an operator from W to Z has
a continuous inverse. If B : Z → W denotes the inverse of S : W → Z,
then consider the operators X−→S �1−→Q −→B W , and note that BQS is
a continuous projection on X whose range is W . The proof of the theorem
is now complete.

We are now ready to characterize the lattice embeddability of �1.

Theorem 4.69. For a Banach lattice E the following statements are equiv-
alent.

(1) �1 is lattice embeddable in E.

(2) There exists a norm bounded disjoint sequence of E+ which is
equivalent to the standard basis of �1.
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(3) There exists a norm bounded disjoint sequence of E which does not
converge weakly to zero.

(4) E′ does not have order continuous norm, i.e., E′ is not a KB-space.
(5) E′ is not weakly sequentially complete.
(6) �∞ is lattice embeddable in E′.
(7) c0 is lattice embeddable in E′.
(8) c0 is embeddable in E′.
(9) �∞ embeds complementably in E′.

(10) �∞ embeds in E′.
(11) �1 embeds complementably in E.

Proof. From Theorems 4.51, 4.61, and 4.68, we see that statements (4)–(11)
are mutually equivalent.

(1) =⇒ (2) If T : �1 → E is a lattice embedding, then the sequence
{T (en)} of E+ is disjoint and equivalent to {en}.

(2) =⇒ (3) If {xn} is a norm bounded disjoint sequence of E+ that is
equivalent to the standard basis of �1, then {xn} does not converge weakly
to zero.

(3) =⇒ (4) Let {xn} be a disjoint sequence of U that does not con-
verge weakly to zero, and assume by way of contradiction that E′ has order
continuous norm.

Let 0 ≤ x′ ∈ E′, and let ε > 0 be fixed. By Theorem 4.19, there exists
some y ∈ E+ satisfying

x′(|x| − y)+ < ε

for all x ∈ U . Since {|xn|∧y} is an order bounded disjoint sequence, we have
|xn| ∧ y−→w 0 in E, and so there exists some k such that x′(|xn| ∧ y) < ε
holds for all n ≥ k. In particular, for n ≥ k we have

|x′(xn)| ≤ x′(|xn| − y)+ + x′(|xn| ∧ y) < ε + ε = 2ε .

This shows that xn−→w 0 holds in E, which is impossible. Hence, E′ does
not have order continuous norm.

(4) =⇒ (1) Since E′ does not have order continuous norm, it follows
from Theorem 4.19 that there exist 0 ≤ x′ ∈ E′ and ε > 0 such that for each
y ∈ E+ we have x′(x− y)+ > 2ε for at least one x ∈ U+. In particular,
there exists a sequence {xn} ⊆ U+ satisfying

x′
(
xn+1 − 4n

n∑
i=1

xi

)+
> 2ε

for all n.
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Let x =
∑∞

n=1 2−nxn. If un =
(
xn+1 − 4n

∑n
i=1 xi − 2−nx

)+, then it
follows from 0 ≤ un ≤ xn+1 ∈ U+ that {un} ⊆ U+. Also, by Lemma 4.35,
the sequence {un} is disjoint. On the other hand, for each n we have

2ε < x′
(
xn+1 − 4n

n∑
i=1

xi

)+
≤ x′(un) + 2−nx′(x) ,

and so, by passing to a subsequence of {un}, we can assume that x′(un) > ε
holds for all n. Now if α1, . . . , αn are arbitrary real numbers, then we have

ε
n∑

i=1

|αi| ≤
n∑

i=1

|αi|x′(ui) = x′
( n∑

i=1

|αi|ui

)
= x′
(∣∣∣

n∑
i=1

αiui

∣∣∣
)

≤ ‖x′‖ ·
∥∥∥
∣∣∣

n∑
i=1

αiui

∣∣∣
∥∥∥ = ‖x′‖ ·

∥∥∥
n∑

i=1

αiui

∥∥∥ .

From this, it easily follows that the operator T : �1 → E defined by

T (α1, α2, . . .) =
∞∑

n=1

αnun

is a lattice embedding, the proof is finished.

Remark. In the preceding theorem, the equivalence of (1) and (6) was
established first by P. Meyer-Nieberg [140] under the assumption that E
had order continuous norm. In its general form the equivalence (1) ⇐⇒ (6)
was proven by B. Kühn [107].

The next two theorems characterize the reflexive Banach lattices. The
first one is due to T. Ogasawara [157].

Theorem 4.70 (Ogasawara). A Banach lattice E is reflexive if and only if
E and E′ are both KB-spaces.

Proof. If the Banach lattice E is reflexive, then clearly E and E′ are both
KB-spaces.

For the converse, assume that E and E′ are both KB-spaces. Then, by
Theorem 4.60 we have E = (E′)∼n . On the other hand, the order continuity
of the norm in E′ implies E′′ = (E′)∼n . Therefore, E = E′′ holds, and so E
is a reflexive Banach lattice.

In terms of embeddings, G. Ya. Lozanovsky [122, 123] characterized
the reflexive Banach lattices as follows.

Theorem 4.71 (Lozanovsky). For a Banach lattice E the following state-
ments are equivalent.

(1) E is reflexive.



248 4. Banach Lattices

(2) Neither c0 nor �1 is lattice embeddable in E.

(3) �1 is not lattice embeddable in either E or E′.

Proof. The nonembeddability of c0 in E is equivalent (by Theorem 4.60) to
E being a KB-space. The nonlattice embeddability of �1 in E is equivalent
(by Theorem 4.69) to E′ being a KB-space. Thus, (2) is equivalent to saying
that E and E′ are both KB-spaces, which by Theorem 4.70 is equivalent to
the reflexivity of E.

To see that (3) is equivalent to the reflexivity of E, note that the nonlat-
tice embeddability of �1 in E is equivalent to the nonlattice embeddability
of c0 in E′; see Theorem 4.69. Thus, by the previous case, statement (3) is
equivalent to the reflexivity of E′, which in turn is equivalent to the reflex-
ivity of E.

The above theorem was reproved by P. Meyer-Nieberg [140, 141] and
L. Tzafriri [187].

Finally, we shall close the section with an elegant result of H. P. Rosen-
thal [170] regarding embeddings of �1. Keep in mind that in a Banach space
a weak Cauchy sequence cannot be equivalent to the standard basis of �1.

Theorem 4.72 (Rosenthal). If {xn} is a norm bounded sequence in a Ba-
nach space, then there exists a subsequence {yn} of {xn} satisfying one of
the two mutually exclusive alternatives:

(a) {yn} is a weak Cauchy sequence.

(b) {yn} is equivalent to the standard basis of �1.

Proof. Let X be a Banach space, and let Ω denote the closed unit ball of
X ′ equipped with the w∗-topology. Then, X can be considered as a Banach
subspace of C(Ω) where, of course, each x ∈ X is identified with the function
x(x′) = x′(x), x′ ∈ Ω. Now note that (by the Riesz representation theorem)
a sequence {xn} in C(Ω) is weakly Cauchy if and only if {xn} is norm
bounded and converges pointwise. Thus, in order to establish the theorem
it suffices to prove the following result.

• Let �∞(Ω) be the Banach lattice of all bounded real-valued func-
tions on an arbitrary set Ω with the sup norm. If a sequence {fn}
of �∞(Ω) satisfies ‖fn‖∞ ≤ 1 and has no pointwise convergent sub-
sequence, then {fn} has a subsequence that is equivalent to the stan-
dard basis of �1.

The proof of (•) will be done by steps. So, let Ω be an arbitrary non-
empty set, and let {fn} be a sequence of �∞(Ω) satisfying ‖fn‖∞ ≤ 1 and
with no pointwise convergent subsequence.
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STEP 1. A sequence {(An, Bn)} of pairs of subsets of a set Θ with
An ∩ Bn = �© for all n is said to converge on a subset D of Θ whenever
each x ∈ D belongs to at most finitely many An or to at most finitely many
Bn (i.e., whenever limχAn

(x) = 0 or limχBn
(x) = 0 hold for all x ∈ D).

We claim that there exist δ > 0, r ∈ R, and a subsequence {gn} of {fn}
such that if

An =
{
ω ∈ Ω: gn(ω) > r + 2δ

}
and Bn =

{
ω ∈ Ω: gn(ω) < r

}
,

then {(An, Bn)} has no convergent subsequence on Ω.
To see this, let {r1, r2, . . .} be an enumeration of Q, the set of all rational

numbers of R. For each n and i let

Ai
n =
{
ω ∈ Ω: fn(ω) > ri + 1

i

}
and Bi

n =
{
ω ∈ Ω: fn(ω) < ri

}
,

and note that Ai
n ∩ Bi

n = �© holds for all n. Also, for simplicity, if {xn}
is a sequence and M is an infinite subset of N, then {xn : n ∈ M} will be
denote the subsequence of {xn} determined by M . Now assume by way of
contradiction that our claim is false.

Then, an easy inductive argument guarantees the existence of a sequence
N1, N2, . . . of infinite subsets of N satisfying Ni+1 ⊆ Ni for each i and such
that the sequence {(Ai

n, Bi
n) : n ∈ Ni} converging in Ω for each i. Fix a

sequence {kn} of natural numbers with ki ∈ Ni and ki+1 > ki. Next, we
claim that the subsequence {fkn} of {fn} converges pointwise. To see this,
let ω ∈ Ω be fixed, and then pick an accumulation point r of {fkn(ω)}. Now
assume that r < ri < ri + 1

i holds for some i. Since fkn(ω) < ri holds for
infinitely many n, we see that ω belongs to Bi

kn
for infinitely many n. Taking

into account that {(Ai
n, Bi

n) : n ∈ Ni} converges on Ω, we obtain that ω ∈ Ai
n

holds for at most a finite number of n ∈ Ni. Thus, fkn(ω) ≤ ri + 1
i holds for

all n sufficiently large. Similarly, if rj < rj + 1
j < r, then fkn(ω) ≥ rj + 1

j

holds for all sufficiently large n. Since the set
{
rn+ 1

n : n = 1, 2, . . .
}

is dense
in R, the latter shows that lim fkn(ω) = r. Thus, {fkn} converges pointwise,
which is a contradiction, and our claim has been established.

STEP 2. Let {(An, Bn)} be a sequence of pairs of subsets of a set Θ with
An ∩Bn = �© for all n. If {(An, Bn)} has a subsequence with no convergent
subsequence on Θ, then there exist some j and some infinite subset M of
N such that {(An, Bn) : n ∈ M} has no convergent subsequence on Aj and
also no convergent subsequence on Bj.

By passing to a subsequence of {(An, Bn)} we can suppose that
{(An, Bn)} has no convergent subsequence on Θ.

Assume by way of contradiction that the conclusion is false. Put n1 = 1.
Then there exists an infinite subset N1 of N such that {(An, Bn) : n ∈ N1}
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converges either on An1 or on Bn1 . Next, pick some n2 ∈ N1 with n2 > n1.
Then there exists an infinite subset N2 of N1 such that {(An, Bn) : n ∈ N2}
converges either on An2 or on Bn2 . Therefore, by induction, there exist
n1 < n2 < · · · and infinite subsets N1 ⊇ N2 ⊇ · · · of N such that ni+1 ∈ Ni

and {(An, Bn) : n ∈ Ni} converges either on Ani or on Bni . By the symmetry
of the situation, we can assume that the set

I =
{
i ∈ N| {(An, Bn) : n ∈ Ni} converges on Ani

}
is infinite. Consider the infinite subset M = {ni : i ∈ I} of N, and note
that {(An, Bn) : n ∈ M} converges on A =

⋃
n∈M An. On the other hand,

since (by our hypothesis) {(An, Bn) : n ∈ M} does not converge on Θ, there
exists some x ∈ Θ such that {n ∈ M : x ∈ An} and {n ∈ M : x ∈ Bn} are
both infinite. Taking into account that x ∈ An holds for some n ∈ M , we
see that x ∈ A, and hence {(An, Bn) : n ∈ M} does not converge on A, a
contradiction.

STEP 3. Let {(An, Bn)} be a sequence of pairs of subsets of a set Θ with
An ∩ Bn = �© for all n. Assume that there exist disjoint subsets D1, . . . , Dr

of the set Θ such that {(An, Bn)} has no subsequence convergent on each Di

(1 ≤ i ≤ r). Then there exist some j and an infinite subset M of N such that
for each i = 1, . . . , r the sequence {(An, Bn) : n ∈ M} has no subsequence
convergent on Di ∩ Aj and also no subsequence convergent on Di ∩ Bj.

Since (by definition) {(An, Bn)} converges on the empty set, it follows
that each Di must be nonempty. The proof is by induction on r. For r = 1,
the validity of the statement follows from Step 2. Now assume that the
statement is true for some r, and let D1, . . . , Dr, Dr+1 be disjoint subsets
of Θ such that {(An, Bn)} has no subsequence convergent on each Di for
i = 1, . . . , r +1. Assume by way of contradiction that our claim is false.

By the induction hypothesis there exist n1 and an infinite subset M1 of
N such that for each i = 2, . . . , r +1 the sequence {(An, Bn) : n ∈ M1} has
no subsequence convergent on Di ∩An1 and also no subsequence convergent
on Di∩Bn1 . It follows that there exists an infinite subset N1 of M1 such that
{(An, Bn) : n ∈ N1} converges on either D1 ∩ An1 or on D1 ∩ Bn1 . We can
assume that {1, . . . , n1} ∩ N1 = �©. Next, pick some n2 ∈ N1, and note that
there exists an infinite subset M2 on N1 such that for each i = 2, . . . , r + 1 the
sequence {(An, Bn) : n ∈ M2} has no subsequence convergent on Di ∩ An2

and also no subsequence convergent on Di ∩ Bn2 . Then there exists an
infinite subset N2 of M2 such that {(An, Bn) : n ∈ N2} converges either on
D1 ∩ An2 or on D1 ∩ Bn2 . We can assume that {1, . . . , n2} ∩ N2 = �©.

Thus, continuing this process, we see that there exist n1 < n2 < · · ·
and infinite subsets N1 ⊇ N2 ⊇ · · · of N with ni+1 ∈ Ni and such that
{(An, Bn) : n ∈ Ni} converges either on D1 ∩ Ani or on D1 ∩ Bni . Now
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consider the set M = {n1, n2, . . .}, and note that the sequence of pairs of
subsets

{
(D1∩An, D1∩Bn) : n ∈ M

}
of D1 has no subsequence convergent

on D1. By Step 2, there exists some j ∈ M and an infinite subset L of M
such that

{
(D1 ∩ An, D1 ∩ Bn) : n ∈ L

}
has no subsequence convergent on

D1∩Aj and also no subsequence convergent on D1∩Bj , which is impossible.
This completes the proof of Step 3.

STEP 4. A sequence {(An, Bn)} of pairs of subsets of a set Θ with
An ∩Bn = �© for all n is said to be independent whenever for each pair of
disjoint finite subsets I and J of N we have

(⋂
i∈I Ai

)
∩
(⋂

j∈J Bj

)
�= �©.

If (An, Bn)} is a sequence of pairs of subsets of a set Θ with An∩Bn = �©
for all n and {(An, Bn)} has no convergent subsequence on Θ, then some
subsequence of {(An, Bn)} is independent.

By Step 2, there exists some n1 and an infinite subset N1 of N such that
{(An, Bn) : n ∈ N1} has no subsequence convergent on either An1 or Bn1 .
We can assume without loss of generality that N1 ∩ {1, . . . , n1} = �©. Now
suppose that n1 < · · · < nk and infinite subsets N1 ⊇ · · · ⊇ Nk of N have
been selected with Nk ∩ {1, . . . , nk} = �© and such that {(An, Bn) : n ∈ Nk}
has no subsequence convergent on anyone of the 2k sets

⋂k
i=1 Ci, where

Ci equals Ani or Bni . Clearly, these sets are pairwise disjoint, and conse-
quently by Step 3 there is nk+1 ∈ Nk and an infinite subset Nk+1 of Nk

with Nk+1 ∩ {1, . . . , nk, nk+1} = �© and such that {(An, Bn) : n ∈ Nk+1}
has no subsequence convergent on any set of the form

⋂k
i=1Ci ∩ Ank+1

or⋂k
i=1Ci ∩ Bnk+1

, where again Ci equals Ani or Bni . Note that nk+1 > nk.
Thus, continuing this way, we construct an infinite set M = {n1, n2, . . .},
and an easy argument shows that {(An, Bn) : n ∈ M} is an independent
subsequence of {(An, Bn)}.

STEP 5. By Steps 2 and 4 there exist a subsequence {gn} of {fn}, r ∈ R

and δ > 0 such that if

An =
{
ω ∈ Ω: gn(ω) > r + 2δ

}
and Bn =

{
ω ∈ Ω: gn(ω) < r

}
,

then {(An, Bn)} is an independent sequence. In this case the sequence {gn}
is equivalent (in the sup norm) to the standard basis of �1.

To see this, let α1, . . . , αn be arbitrary real scalars. Put

I =
{
i ∈ {1, . . . , n} : αi ≥ 0

}
and J =

{
j ∈ {1, . . . , n} : αj < 0

}
,

and then pick

s ∈
(⋂

i∈I

Ai

)
∩
(⋂

j∈J

Bj

)
and t ∈

(⋂
j∈J

Aj

)
∩
(⋂

i∈I

Bi

)
.
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For convenience, we assume that
⋂

i∈ �©Ci = Ω. Note that

n∑
i=1

αigi(s) ≥
∑
i∈I

|αi|(r + 2δ) −
∑
j∈J

|αi|r

and

−
n∑

i=1

αigi(t) ≥ −
∑
i∈I

|αi|r +
∑
j∈J

|αj |(r + 2δ) .

Therefore,

2
∥∥∥

n∑
i=1

αigi

∥∥∥
∞

≥
n∑

i=1

αigi(s) −
n∑

i=1

αigi(t) ≥ 2δ
n∑

i=1

|αi| ,

and so

δ
n∑

i=1

|αi| ≤
∥∥∥

n∑
i=1

αigi

∥∥∥
∞

holds, which shows that {gn} is equivalent to the standard basis of �1. The
proof of the theorem is now complete.

Exercises

1. Show that if a Banach lattice E is lattice embeddable in a Banach lattice
with order continuous norm, then E itself has order continuous norm.

2. Show that a Dedekind σ-complete Banach lattice E has order continuous
norm if and only if C[0, 1] is not lattice embeddable in E.

3. Show that the mapping T : �d1 → (�∞/c0)
′, defined by [Tf ](ẋ) = f(x) for

f ∈ �d1 and x ∈ �∞, is an onto lattice isometry.

4. If a Banach lattice has a separable double dual, then show that it is
reflexive.

5. If the double dual of a Banach lattice E has order continuous norm, then
show that E is a KB-space.

6. Show that a Banach lattice E is a KB-space if and only if every disjoint
sequence of E+ with norm bounded sequence of partial sums is norm
convergent to zero.

7. For a Banach lattice E establish the following properties.
(a) E has order continuous norm if and only if every disjoint sequence

of U ′ is w∗-convergent to zero.
(b) E′ has order continuous norm if and only if every disjoint sequence

of U converges weakly to zero.
[Hint : Consider part (b). Assume that E′ has order continuous norm.
Let a sequence {xn} ⊆ U be disjoint, let 0 ≤ x′ ∈ E′, and let ε > 0. By
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Theorem 4.19, there exists some u ∈ E+ satisfying x′(|x| −u)+ < ε for
all x ∈ U . In particular, we have∣∣x′(xn)

∣∣ ≤ x′(|xn|) = x′(|xn| −u
)+ + x′(|xn| ∧ u

)
< ε + x′(|xn| ∧ u

)
.

Since {|xn| ∧ u} is an order bounded disjoint sequence, it follows that
|xn| ∧ u−→w 0, and so lim sup |x′(xn)| ≤ ε. This implies lim x′(xn) = 0.

For the converse assume that every norm bounded disjoint sequence
of E is weakly convergent to zero. Since the standard basis {en} of �1
is a norm bounded disjoint sequence that does not converge weakly to
zero, we see that �1 is not lattice embeddable in E. By Theorem 4.69
this means that c0 is not embeddable in E′, which by Theorem 4.60 is
equivalent to saying that E′ is a KB-space. ]

8. Let {xn} be a weak Cauchy sequence in a Banach space X. If either
(a) {xn} converges weakly in X, or
(b) X is a Banach lattice and {xn} is monotone ,

then show that {xn} has property (u).

9. Let {xn} be a sequence in a Banach space X such that for each x′ ∈ X ′

we have
∑∞

n=1

∣∣x′(xn)
∣∣ < ∞. Then show that:

(a) For each (α1, α2, . . .) ∈ c0 the series
∑∞

n=1 αnxn is norm convergent.
(b) The operator T : c0 → X, defined by

T (α1, α2, . . .) =
∞∑

n=1

αnxn

is continuous.

10. Show that every finite dimensional vector subspace of a Banach space is
complemented.

11. If X is a Banach space and x′
1, . . . , x

′
n ∈ X ′, then show that the closed

vector subspace M =
{
x ∈ X : x′

i(x) = 0 for i = 1, . . . , n
}

of X has
a finite dimensional complement. [Hint : We can assume that x′

1, . . . , x
′
n

are linearly independent functionals. This implies (by Lemma 3.15) that⋂
i
=j Ker x′

i �⊆ Ker x′
j holds for each j. So, for each j = 1, . . . , n there

exists some xj ∈ X with x′
i(xj) = 0 for i �= j and x′

j(xj) = 1. If N is the
finite dimensional vector subspace generated by {x1, . . . , xn}, then show
that X = M ⊕ N . ]

12. If c0 is embeddable in a Banach lattice E, then show that �1 is lattice
embeddable in E′.

13. For a Banach lattice E with order continuous norm show that the follow-
ing statements are equivalent:
(a) E′ has order continuous norm, i.e., E′ is a KB-space.
(b) �1 does not embed in E.
(c) c0 does not embed in E′.

[Hint : Use Theorem 4.25. ]

14. Let E be an AL- or an AM -space. Then show that E is reflexive if and
only if E is finite dimensional. [Hint : Let E be a reflexive AM -space
with unit. Then E has order continuous norm. Now note that if {xn}
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is a disjoint sequence of E satisfying xn �= 0 for all n, then
{

xn

‖xn‖ is an
order bounded disjoint sequence of E that does not converge to zero. ]

15. Show that �1 is always lattice embeddable in an infinite dimensional AL-
space. Also, construct a lattice isometry from �1 into L1[0, 1]. [Hint : If E
is an infinite dimensional AL-space, then by the preceding exercise and
Theorem 4.70, we see that E′ does not have order continuous norm. Now
apply Theorem 4.69. ]

16. Show that c0 is always lattice embeddable in an infinite dimensional AM -
space. Also construct a lattice isometry from c0 into C[0, 1]. [Hint : Use
Exercise 14 above and Theorem 4.61. ]

17. If a norm bounded disjoint sequence {xn} in a Banach lattice does not
converge weakly to zero, then show that {xn} has a subsequence with no
weakly Cauchy subsequence.

18. (Johnson–Tzafriri [80]) If a Banach space X embeds complementably in
a Banach lattice, then show that:
(a) X is weakly sequentially complete if and only if c0 is not embeddable

in X.
(b) X is reflexive if and only if neither �1 nor c0 is embeddable in X.

19. Recall that a Banach space has the Schur property whenever xn−→w 0
implies ‖xn‖ → 0. For a Banach space X with the Schur property prove
the following:
(a) X is weakly sequentially complete.
(b) If X is reflexive, then X is finite dimensional.

20. (Rosenthal [170]) Show that for a weakly sequentially complete Banach
space X one of the following two mutually exclusive alternatives hold.
(a) X is reflexive.
(b) �1 is embeddable in X.

21. (Rosenthal [170]) Show that if a Banach space X has the Schur property,
then �1 is embeddable into every infinite dimensional closed vector sub-
space of X. [Hint : A reflexive Banach space with the Schur property is
finite dimensional. ]

4.4. Banach Lattices of Operators

The lattice properties of AM -spaces were discussed in the previous sections.
An AM -space with unit, besides being a Banach lattice, has also an f -
algebra structure which is very important. In this section, we shall utilize
the ring structure of AM -spaces to derive some useful “local approximation”
properties of operators on Banach lattices.

For an arbitrary pair of Banach spaces X and Y , the symbol L(X, Y )
will denote the vector space of all continuous operators from X into Y . For
simplicity, instead of L(X, X) we shall write L(X). It is well known that
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under the norm
‖T‖ := sup

{
‖Tx‖ : ‖x‖ ≤ 1

}
the vector space L(X, Y ) is also a Banach space. Since every positive op-
erator between Banach lattices is continuous (see Theorem 4.3), it follows
that Lr(E, F ) ⊆ L(E, F ) holds for every pair of Banach lattices E and F .
In general, as the next example shows, this inclusion is proper.

Example 4.73. Consider the operator T : C[0, 1] → c0 defined by

Tf =
(
f(1)− f(0), f(1

2)− f(0), f(1
3)− f(0), . . .

)
.

From |f( 1
n)− f(0)| ≤ 2‖f‖∞, we see that ‖Tf‖∞ ≤ 2‖f‖∞ holds for each

f ∈ C[0, 1], and so T is a continuous operator. On the other hand, we claim
that T is not order bounded.

To see this, assume by way of contradiction that there exists some vector
u = (u1, u2, . . .) ∈ c0 satisfying |Tf | ≤ u for all f ∈ [0,1], where 1 denotes
the constant function one. For each n pick some fn ∈ [0,1] with fn(0) = 0
and fn

(
1
n

)
= 1, and note that 1 =

∣∣fn

(
1
n

)
− fn(0)

∣∣ ≤ un holds. This shows
that u /∈ c0, which is a contradiction. Hence, T is not order bounded (and
thus is not a regular operator), as claimed.

Consider two Banach lattices E and F . If T : E → F is an operator with
modulus, then the regular norm, abbreviated as the r-norm, is defined
by

‖T‖r :=
∥∥|T |
∥∥ := sup

{∥∥|T |x
∥∥ : ‖x‖ ≤ 1

}
.

Clearly, ‖T‖ ≤ ‖T‖r holds.
Now assume that F is also Dedekind complete. Then, it is easy to see

that ‖ · ‖r is a lattice norm on Lb(E, F ) = Lr(E, F ). Remarkably, Lb(E, F )
under the r-norm is also a Banach lattice.

Theorem 4.74. If E and F are Banach lattices with F Dedekind complete,
then Lb(E, F ) under the r-norm is a Dedekind complete Banach lattice.

Proof. Let {Tn} be a ‖ · ‖r-Cauchy sequence of Lb(E, F ). By passing to a
subsequence we can assume that

‖Tn+1 −Tn‖r =
∥∥|Tn+1 −Tn|

∥∥ < 1
2n

holds for each n. From ‖Tn+1 −Tn‖ ≤ ‖Tn+1 −Tn‖r, we see that {Tn} is
a Cauchy sequence of L(E, F ). Thus, there exists some T ∈ L(E, F ) with
‖Tn −T‖ → 0.

Next let x ∈ E+. Then for each y ∈ E with |y| ≤ x we have

(T −Tn)y =
∞∑

i=n

(Ti+1 −Ti)y ≤
∞∑

i=n

|Ti+1 −Ti|x .
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Therefore, the modulus of T −Tn exists and satisfies

|T −Tn|x = sup
{
(T −Tn)y : |y| ≤ x

}
≤

∞∑
i=n

|Ti+1 −Ti|x (�)

for all x ∈ E+. Form T = (T −T1) + T1, we see that T is a regular operator,
i.e., T ∈ Lb(E, F ). On the other hand, it follows from (�) that

‖T −Tn‖r ≤
∞∑

i=n

‖Ti+1 −Ti‖r ≤ 21−n ,

and so lim ‖T −Tn‖r = 0. That is, Lb(E, F ) under the r-norm is a Banach
lattice as claimed.

In view of Example 4.73 we know that in general Lr(E, F ) is a proper
vector subspace of L(E, F ). However, if F is a Dedekind complete AM -space
with unit, then it should be clear that Lr(E, F ) = L(E, F ) holds. The next
result presents another not so obvious case under which Lr(E, F ) = L(E, F )
holds.

Theorem 4.75. If E is an arbitrary AL-space and F is a KB-space, then
Lb(E, F ) = L(E, F ) holds. Moreover, in this case we have ‖T‖r = ‖T‖ for
each T ∈ L(E, F ).

Proof. Let T ∈ L(E, F ), and let [0, x] be an interval of E. Since E′ is an
AM -space with unit, the adjoint operator T ′ : F ′ → E′ is an order bounded
operator, and hence T ′′ : E′′ → F ′′ is likewise order bounded. So, there
exists some x′′ ∈ F ′′ satisfying −x′′ ≤ Ty ≤ x′′ for all y ∈ [0, x]. Now
if P denotes the order projection on F ′′ onto F (see Theorem 4.60), then
−Px′′ ≤ Ty ≤ Px′′ holds for all y ∈ [0, x], and this shows that T is an order
bounded operator, i.e., T ∈ Lb(E, F ). Hence Lb(E, F ) = L(E, F ).

Observe, that by the preceding theorem every continuous operator be-
tween AL-spaces possesses a modulus.

Recall that an orthomorphism is an order bounded operator on a Riesz
space that leaves all bands invariant. When the underlying Riesz space
has the structure of a Banach lattice, the orthomorphisms enjoy some ex-
tra properties. For instance, Example 2.38 demonstrates that a band pre-
serving operator on a Riesz space need not be order bounded. However,
Y. A. Abramovich, A. I. Veksler, and A. V. Koldunov [4] have shown that
on a Banach lattice every band preserving operator is necessarily an ortho-
morphism. This result is stated next.

Theorem 4.76 (Abramovich–Veksler–Koldunov). Every band preserving
operator on a Banach lattice is order bounded—and hence norm bounded.
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Proof. Let T : E → E be a band preserving operator on a Banach lattice.
The proof consists of two parts.

Assume first that the operator T is also norm bounded. Then we claim
that |Tx| ≤ ‖T‖x holds for all x ∈ E+, and this will be enough to establish
that T is order bounded. To this end, assume by way of contradiction that
there exists some x > 0 with (|Tx| − ‖T‖x)+ > 0. Since E is Archimedean,
it is easy to see that there exists some M > ‖T‖ with (|Tx| −Mx)+ > 0.
Let y = |Tx| −Mx, and denote by B the band generated by y−. Clearly,
x /∈ B. (Otherwise, x ∈ B implies Tx ∈ B, and so y+ ∈ B, which implies
y+ = 0, a contradiction.) Since every band of E is norm closed, E/B is
a Banach lattice. Moreover, in view of T (B) ⊆ B, it is easy to see that
the formula Ṫ ẋ = (Tx)̇ defines a norm bounded operator on E/B satisfying
‖Ṫ‖ ≤ ‖T‖. From∣∣(Tx)̇

∣∣−Mẋ = (|Tx| −Mx)̇ = (y+)̇− (y−)̇ = (y+)̇ ≥ 0 ,

we see that |(Tx)̇ | ≥ Mẋ ≥ 0, and so ‖Ṫ ẋ‖ ≥ M‖ẋ‖. Since ẋ �= 0, the latter
implies ‖Ṫ‖ ≥ M > ‖T‖, which is impossible. Thus, |Tx| ≤ ‖T‖x holds for
each x ∈ E+. The preceding proof is due to W. A. J. Luxemburg [126].

Now consider the general case. By Zorn’s lemma there exists a maximal
collection {Bα : α ∈ A} of pairwise disjoint bands such that T : Bα → Bα is
norm bounded (and hence order bounded by the preceding case). Therefore,
T is order bounded on the idea A =

∑
α∈A⊕Bα, and we claim that A is

order dense. If this is the case, then by Theorem 2.42, the operator T must
be order bounded (and hence it must be also norm bounded since it will be
the difference of two positive orthomorphisms).

To see that A is order dense in E, assume by way of contradiction
that Ad �= {0} holds. Then Ad must have infinite dimension. (Otherwise,
T : Ad → Ad must be continuous, and so, by incorporating the band Ad into
{Bα : α ∈ A}, we would violate the maximality property of {Bα : α ∈ A}.)
Therefore, there exists a disjoint sequence {un} of Ad with un > 0 for each
n. Let Bn denote the band generated by un. Then, T : Bn → Bn cannot be
norm bounded, and so for each n there exists some xn ∈ Bn with ‖xn‖ = 1
and ‖Txn‖ ≥ n3. Let x =

∑∞
n=1

xn
n2 ∈ E, and note that if yk = x− xk

k2 , then
yk ⊥ xk. Thus, Txk ⊥ Tyk holds for each k, and so from

|Txk|
k2 ≤ |Tyk| + |Txk|

k2 =
∣∣Tyk + Txk

k2

∣∣ = |Tx| ,

we see that k ≤ ‖Txk‖
k2 ≤ ‖Tx‖ holds for each k, which is impossible. Hence,

Ad = {0}, and so A is order dense in E. The above proof of the second part
is due to B. de Pagter.

Now let E be a Banach lattice. By Theorem 2.40 we know that every
orthomorphism on E possesses a modulus, and so Orth(E) under the r-norm
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is a normed space. The next result, due to A. W. Wickstead [191], tells us
that Orth(E) is, in fact, an AM -space with unit the identity operator.

Theorem 4.77 (Wickstead). If E is a Banach lattice, then

Orth(E) =
{
T ∈ Lb(E) : ∃λ > 0 with − λI ≤ T ≤ λI

}

and ‖T‖r = inf
{
λ > 0: |T | ≤ λI} holds for all T ∈ Orth(E).

In particular, Orth(E) under the r-norm is an AM -space with unit the
identity operator I.

Proof. Let 0 ≤ T ∈ Orth(E). By Theorem 4.3 we know that ‖T‖ < ∞.
Now assume that for some λ > 0 we have (T −λI)+ > 0. Then there exists
some x ∈ E+ such that y = (T −λI)+x > 0. Using the fact that Orth(E) is
an f -algebra, it follows from Theorem 2.54 that (T −λI)y = [(T −λI)+]y ≥
0, and so Ty ≥ λy > 0. This implies ‖Ty‖ ≥ λ‖y‖ > 0, from which it follows
that ‖T‖ ≥ λ holds. Hence, (T −λI)+ = 0 must hold for all λ > ‖T‖. That
is, T ≤ λI holds for all λ > ‖T‖, and the conclusions of the first part follow.
The above elegant proof is due to W. A. J. Luxemburg [126].

Finally, to establish that Orth(E) under the r-norm is an AM -space
with unit I, it remains to be shown that Orth(E) is ‖ · ‖r-complete. To
this end, let {Tn} ⊆ Orth(E) be a ‖ · ‖r-Cauchy sequence. Since every
T ∈ Orth(E) satisfies |T |(|x|) = |T (x)| for all x ∈ E (see Theorem 2.40), it
follows that ‖Tn −Tm‖ = ‖Tn −Tm‖r, and consequently there exists some
T ∈ L(E) with lim ‖Tn −T‖ = 0, Now if B is a band of E and x ∈ B,
then {Tn(x)} ⊆ B, lim ‖Tn(x)−T (x)‖ = 0 and the norm closedness of B
imply T (x) ∈ B. Thus, T is a band preserving operator, and so it follows
from Theorem 4.76 that T ∈ Orth(E). To complete the proof, note that
‖Tn −T‖r = ‖Tn −T‖ → 0.

Consider a positive operator T : E → F between two Riesz spaces with
F Dedekind complete. In Section 2.1, under the assumption that E had the
principal projection property, we were able to describe the components of T
by employing order projections. Subsequently, the positive operators dom-
inated by T were approximated by linear combinations of operators of the
form QTP with Q and P appropriate order projections. However, if E lacks
the principal projection property, then these techniques are not applicable.
It is, therefore, remarkable that for Banach lattices the positive operators
dominated by T can approximated “locally” by linear combinations of op-
erators of the form LTM , where L and M are now orthomorphisms. As
we shall see, the reason is that a Banach lattice has an abundance of ortho-
morphisms to compensate for the loss of order projections. The discussion
below will clarify the situation.
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Let E be an AM -space with a unit e. By Theorem 2.58 we know that
E admits at most one product under which it is an f -algebra having e as
its multiplicative unit. On the other hand, by Theorem 4.29, there exists a
unique Hausdorff compact topological space Ω and an onto lattice isometry
π : E → C(Ω) with π(e) = 1 (where 1 is the constant function one on Ω).
Since C(Ω) is an f -algebra with multiplicative unit 1, it follows that E is
also an f -algebra having e as its multiplicative unit. Clearly, the product in
E is defined by

xy = π−1
(
π(x)π(y)

)
,

form which it follows that
|xy| = |x| |y|

holds for all x, y ∈ E. Thus, E admits a unique product under which it is
an f -algebra with e being also its multiplicative unit. In particular, every
vector x ∈ E gives rise to a multiplication operator M : E → E defined
by the formula

M(y) = xy , y ∈ E .

If M is also a positive operator, then it will be referred to as a positive
multiplication operator (clearly, this is equivalent to saying that the
“multiplier” x of M is a positive element). Of course, on an AM -space
with unit the multiplication operators are precisely the orthomorphisms;
see Theorem 2.62. In sum:

• Every AM -space E with unit e is an f-algebra having e also as
its multiplicative unit, and every x ∈ E defines a multiplication
operator on E by the formula M(y) = xy.

Now let E be a Banach lattice, and let Ex be the ideal generated by
some nonzero vector x of E. Then, we know that under the norm

‖y‖∞ = inf
{
λ > 0: |y| ≤ λ|x|

}
, y ∈ Ex ,

the ideal Ex is an AM -space with unit |x| (see Theorem 4.21), and so Ex

has plenty of multiplication operators. In other words, every Banach lattice
has the following important “local” behavior:

• On every principal ideal there is an abundance of multiplication
operators.

Remarkably, quite often these multiplication operators have extensions
to the whole space, and this will be very useful to the study of operators on
Banach lattices.

Lemma 4.78. For an element u > 0 in a Banach lattice E and a multipli-
cation operator T : Eu → Eu the following statements hold:

(1) T is continuous with respect to the norm induced on Eu by E.
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(2) If E is Dedekind σ-complete, then T extends to an orthomorphism
on E (which is positive if T is positive).

Proof. Pick a unique x ∈ Eu such that T (y) = xy holds for all y ∈ Eu,
and then fix some λ > 0 with |x| ≤ λu. Then for each y ∈ Eu we have∣∣T (y)

∣∣ = |xy| = |x| |y| ≤ λu|y| = λ|y| . (�)

(1) From (�) we have
‖Ty‖ ≤ λ‖y‖

for each y ∈ Eu, and so T is a continuous operator on Eu for the norm
induced by E.

(2) Let I : E → E be the identity operator. Consider the multiplication
operators T+, T− : Eu → Eu defined by T+(y) = x+y and T−(y) = x−y.
From (�), we see that

0 ≤ T+(y) ≤ λI(y) and 0 ≤ T−(y) ≤ λI(y)

holds for each 0 ≤ y ∈ Eu.
Thus, we can suppose that 0 ≤ T (y) ≤ λy holds for all 0 ≤ y ∈ Eu.

Define S : E+ → E+ by

S(y) = sup
{
T (y ∧ nu) : n = 1, 2, . . .

}
.

Clearly, the supremum exists and S(y) = T (y) holds for all 0 ≤ y ∈ Eu.
Moreover, we have 0 ≤ S(y) ≤ λy for all y ∈ E+. On the other hand, as in
the proof of Theorem 1.22, we see that S is additive on E+, and so it defines
a positive orthomorphism on E. Now note that S is the desired extension
of T .

We know that the natural embedding of a Banach lattice E into its
double dual E′′ preserves the algebraic, norm, and lattice structures of E.
When E is an AM -space with unit, the natural embedding of E into E′′

preserves also the ring structure of E. The details follow.

Theorem 4.79. If E is an AM -space with unit e, then E′′ is a Dede-
kind complete AM -space with unit e containing the f-algebra E as an f-
subalgebra.

Proof. Clearly, E′′ is an AM -space with unit. To see that e is also the unit
of E′′, note that if x′′ ∈ E′′ satisfies ‖x′′‖ ≤ 1, then for each 0 ≤ x′ ∈ E′ we
have

|x′′|(x′) ≤ ‖x′′‖ · ‖x′‖ ≤ ‖x′|| = x′(e) ≤ e(x′) ,

and so |x′′| ≤ e. Conversely, |x′′| ≤ e implies ‖x′′‖ ≤ 1.
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Next, we shall show that E is an f -subalgebra of E′′. To this end,
denote the product of E by · and the product of E′′ by �. Fix x ∈ E+

with 0 ≤ x ≤ e, and define the orthomorphism T : E → E by

T (y) = x · y , y ∈ E .

Now consider T as an operator from E into E′′, and note that for each
y ∈ E+ we have

0 ≤ T (y) = x · y ≤ e · y = y .

Thus, by Theorem 2.49, T extends to an orthomorphism from E′′ into E′′,
which we denote by T again. Next, according to Theorem 2.62, there exists
some x′′ ∈ E′′ so that T (y′′) = x′′ � y′′ holds for all y′′ ∈ E′′. In particular,
we have

x′′ = x′′ � e = T (e) = x · e = x .

Therefore, x · y = x � y holds for all y ∈ E, and from this it follows that E
is an f -subalgebra of E′′.

Let E be an AM -space with unit. Then, it is an immediate consequence
of the preceding theorem that every multiplication operator on E defines
(in the obvious manner) a multiplication operator on E′′. From now on,
without any further discussion, every multiplication operator on E also will
be considered as a multiplication operator on E′′. Although E may not have
any nontrivial order projections, the Dedekind completeness of E′′ guaran-
tees an abundance of order projections on E′′. The next result shows that
the order projections of E′′ can be approximated “locally” by the multipli-
cation operators of E.

Lemma 4.80. Let E be an AM -space with unit e, and let P be an order
projection on E′′. Then for each 0 ≤ x′ ∈ E′ and each ε > 0 there exists a
positive multiplication operator M on E such that:

(a) 0 ≤ M ≤ I.
(b) The modulus of P −M in E′′ satisfies

〈
x′, |P −M |e

〉
< ε.

Proof. Let P be an order projection on E′′, let 0 ≤ x′ ∈ E′, and let ε > 0.
In view of 0 ≤ Py′′ ≤ y′′ for all 0 ≤ y′′ ∈ E′′, there exists (by Theorem 2.62)
a unique x′′ ∈ E′′ with 0 ≤ x′′ ≤ e and satisfying P (y′′) = x′′ · y′′ for all
y′′ ∈ E′′.

Now note that E′ (as an AL-space) has order continuous norm, and so
E′′ = (E′)∼n holds. Thus, by Theorem 3.60, E is |σ|(E′′, E′)-dense in E′′, and
therefore there exists some x ∈ E+ satisfying

〈
x′, |x′′−x|

〉
< ε. Replacing

x by x ∧ e, we can assume that 0 ≤ x ≤ e holds.
Next, consider the multiplication operator M on the Banach lattice E

defined by M(y) = xy (and, of course, M defines a multiplication operator
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on E′′ by the formula M(y′′) = xy′′). Clearly, 0 ≤ M ≤ I holds on E, and,
on the other hand, it follows from Theorem 2.40 that

|P −M |e = |(P −M)e| = |(x′′−x)e| = |x′′−x| .

Thus,
〈
x′, |P −M |e

〉
=
〈
x′, |x′′−x|

〉
< ε holds, as desired.

We now come to an important approximation property of positive oper-
ators defined on an AM -space.

Theorem 4.81. Let E be an AM -space with unit e, let F be a Dedekind
complete Banach lattice, and let S, T : E → F be two positive operators such
that 0 ≤ S ≤ T holds. Then, for each 0 ≤ x′ ∈ F∼

n and each ε > 0 there ex-
ist positive multiplication operators M1, . . . , Mk on E and order projections
P1, . . . , Pk on F satisfying

0 ≤
k∑

i=1

PiTMi ≤ T and
〈
x′,
∣∣∣S −

k∑
i=1

PiTMi

∣∣∣e
〉

< ε .

Proof. Fix ε > 0 and 0 ≤ x′ ∈ F∼
n . Assume first that S is a component of

T , i.e., S ∧ (T −S) = 0 holds in Lb(E, F ). Then, by Theorem 1.21, we have

{ n∑
i=1

Sxi ∧ (T −S)xi : x1, . . . ,∈ E+ and
n∑

i=1

xi = e
}
↓ 0 .

Thus, there exist x1, . . . , xn ∈ E+ with x1 + · · · + xn = e and

〈
x′,

n∑
i=1

Sxi ∧ (T −S)xi

〉
< ε . (��)

Now let Mi be the positive multiplication operators on E determined by
xi (i.e., Mi(y) = xiy for all y ∈ E), and note that (M1 + · · · + Mn)y = y
holds for all y ∈ E. Next, let Pi be the order projection of F onto the band
generated in F by (2Sxi −Txi)+. Clearly, Pi(2Sxi −Txi) = (2Sxi −Txi)+,
and moreover we have 0 ≤

∑n
i=1 PiTMi ≤

∑n
i=1 TMi = T . On the other
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hand, the modulus of S −
∑n

i=1 PiTMi satisfies
∣∣∣S −

n∑
i=1

PiTMi

∣∣∣e ≤
∣∣∣S −

n∑
i=1

PiSMi

∣∣∣e +
∣∣∣

n∑
i=1

Pi(T −S)Mi

∣∣∣e

=
n∑

i=1

(S −PiS)Mie +
n∑

i=1

Pi(T −S)Mie

=
n∑

i=1

(S −PiS)xi +
n∑

i=1

Pi(T −S)xi

=
n∑

i=1

[
Sxi −Pi(2Sxi −Txi)

]

=
n∑

i=1

[
Sxi − (2Sxi −Txi)+

]

=
n∑

i=1

Sxi ∧ (T −S)xi .

Taking into account (��), we see that
〈
x′,
∣∣∣S −

n∑
i=1

PiTMi

∣∣∣e
〉

< ε .

Now consider the general case. Since [0, T ] is an order interval in the
Banach lattice Lb(E, F ), it follows from Theorem 3.61 that there exists a
convex combination

∑m
i=1 αiSi of components of T such that

∥∥∥
∣∣∣S −

m∑
i=1

αiSi

∣∣∣
∥∥∥ =
∥∥∥S −

m∑
i=1

αiSi

∥∥∥
r

< ε
2‖x′‖ .

By the preceding case, for each i = 1, . . . , m there exist positive multipli-
cation operators M i

1, . . . , M
i
mi

on E and order projections P i
1, . . . , P

i
mi

on F
satisfying

0 ≤
mi∑
j=1

P i
jTM i

j ≤ T and
〈
x′,
∣∣∣Si −

mi∑
j=1

P i
jTM i

j

∣∣∣e
〉

< ε
2 .

Now let R =
∑m

i=1

∑mi
j=1 P i

jT (αiM
i
j). Clearly, 0 ≤ R ≤ T , and moreover

〈
x′, |S −R|e

〉
≤
〈
x′,
∣∣∣S −

m∑
i=1

αiSi

∣∣∣e
〉

+
〈
x′,
∣∣∣

m∑
i=1

αi

(
Si −

mi∑
j=1

P i
jTM i

j

)∣∣∣e
〉

≤ ε
2 +

m∑
i=1

αi

〈
x′,
∣∣∣Si −

mi∑
j=1

P i
jTM i

j

∣∣∣e
〉

< ε
2 + ε

2 = ε .

The proof of the theorem is now complete.
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Now let S, T : E → F be two positive operators between Banach lattices
such that 0 ≤ S ≤ T . If F is Dedekind complete, then by Theorem 2.9
the operator S can be approximated uniformly by linear combinations of
components of T (the T -step functions). However, if F is not Dedekind
complete, then T may not have any nontrivial components, and so such an
approximation of S need not be possible. On the other hand, if we consider
F as a Banach sublattice of F ′′ and view T as an operator from E into F ′′,
then T has plenty of components in Lb(E, F ′′), and hence every positive
operator dominated by T can be approximated uniformly by the Lb(E, F ′′)-
step functions of T . In the sequel, this observation will be used frequently.

In case E is an AM -space with unit, the next result presents an im-
portant approximation property of positive operators in Lb(E, F ′′) that are
dominated by a positive operator of Lb(E, F ). Its proof follows immediately
from Theorem 4.81.

Theorem 4.82. let E be an AM -space with unit e, let F be a Banach
lattice, and let T : E → F be a positive operator. If S : E → F ′′ is a positive
operators satisfying 0 ≤ S ≤ T (in Lb(E, F ′′)), then given, given 0 ≤ x′ ∈ F ′

and ε > 0, there exist positive multiplication operators M1, . . . , Mk on E and
order projections P1, . . . , Pk on F ′′ satisfying

0 ≤
k∑

i=1

PiTMi ≤ T and
〈
x′,
∣∣∣S −

k∑
i=1

PiTMi

∣∣∣e
〉

< ε .

When E and F are both AM -spaces with units, then the following ver-
sion of Theorem 4.81 holds true.

Theorem 4.83. Let S, T : E → F be two positive operators between AM -
spaces with units such that 0 ≤ S ≤ T holds. If 0 ≤ x′ ∈ F ′ and ε > 0
are given, then there exist positive multiplication operators M1, . . . , Mk on
E and positive multiplication operators L1, . . . , Lk on F such that

〈
x′,
∣∣∣
(
S −

k∑
i=1

LiTMi

)
x
∣∣∣
〉

< ε

holds for all x ∈ E with ‖x‖ ≤ 1.

Proof. Fix 0 ≤ x′ ∈ F ′ and ε > 0, and let e denote the unit of E. Consider
S and T as operators from E into F ′′, and note that 0 ≤ x′ ∈ (F ′′)∼n
holds. Then, by Theorem 4.81, there exist positive multiplication operators
M1, . . . , Mk on E and order projections P1, . . . , Pk on F ′′ satisfying

〈
x′,
∣∣∣S −

k∑
i=1

PiTMi

∣∣∣e
〉

< ε
2 .
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Now for each i = 1, . . . , k there exists (by Lemma 4.80) a positive mul-
tiplication operator Li on F such that

〈
x′, |Pi −Li|TMie

〉
< ε

2k .

Therefore, for each x ∈ E with ‖x‖ ≤ 1 we have

〈
x′,
∣∣∣(S −

k∑
i=1

LiTMi

)
x
∣∣∣
〉

≤
〈
x′,
∣∣∣(S −

k∑
i=1

PiTMi

)
x
∣∣∣
〉

+
〈
x′,
∣∣∣

k∑
i=1

(Pi −Li)TMix
∣∣∣
〉

≤
〈
x′,
∣∣∣S −

k∑
i=1

PiTMi

∣∣∣e
〉

+
k∑

i=1

〈
x′, |Pi −Li|TMie

〉

< ε
2 + ε

2 = ε ,

and the proof is finished.

For Dedekind complete Banach lattices we have the following companion
of the preceding result.

Theorem 4.84. Let E and F be two Dedekind complete Banach lattices, and
let S, T : E → F be two positive operators such that 0 ≤ S ≤ T holds. Then
for each x ∈ E+, 0 ≤ x′ ∈ F ′, and ε > 0 there exist positive orthomorphisms
M1, . . . , Mk on E and positive orthomorphisms L1, . . . , Lk on F such that

〈
x′,
∣∣∣
(
S −

k∑
i=1

LiTMi

)
y
∣∣∣
〉

< ε

holds for all y ∈ E with |y| ≤ x.

Proof. Let x ∈ E+, 0 ≤ x′ ∈ F ′, and ε > 0 be fixed. Put u = Tx, and
consider the ideals Ex and Fu generated by x in E and u in F , respectively.
Clearly, S and T carry Ex into Fu. Thus, by Theorem 4.83, there exist pos-
itive multiplication operators M1. . . . , Mk on Ex and positive multiplication
operators L1, . . . , Lk on Fu such that |y| ≤ x implies

〈
x′,
∣∣∣
(
S −

k∑
i=1

LiTMi

)
y
∣∣∣
〉

< ε . (†)

Now by part (2) of Lemma 4.78 each Mi extends to a positive orthomorphism
on E and each Li extends to a positive orthomorphism on F , and the desired
conclusion follows from (†).
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To continue our discussion, we need the concept of a quasi-interior point.
A positive element u in a normed Riesz space is said to be a quasi-interior
point whenever the ideal Eu generated by u is norm dense.

The quasi-interior points are characterized as follows.

Theorem 4.85. For a positive vector u in a normed Riesz space E the
following statements are equivalent.

(1) The vector u is a quasi-interior point.

(2) For each x ∈ E+ we have ‖x−x ∧ nu‖ → 0.

(3) The vector u is strictly positive on E′, i.e., 0 < x′ ∈ E′ implies
x′(u) > 0.3

Proof. (1) =⇒ (2) Assume that Eu is norm dense in E. Let x ∈ E+, and let
ε > 0. Pick some y ∈ Eu with ‖x− y‖ < ε. Then the element z = y+∧x ∈ Eu

satisfies ‖x−z‖ ≤ ‖x−y‖ < ε and 0 ≤ z ≤ x. Pick some k with z ≤ ku, and
note that for n ≥ k we have 0 ≤ x−x∧nu ≤ x−x∧ku ≤ x− z. Therefore,
‖x − x ∧ nu‖ < ε holds for all n ≥ k, which shows that ‖x − x ∧ nu‖ → 0.

(2) =⇒ (3) Let 0 < x′ ∈ E′, and assume by way of contradiction that
x′(u) = 0. Then for each x ∈ E+ we have 0 ≤ x ∧ nu ≤ nu, and so
x′(x ∧ nu) = 0 holds for all n and all x ∈ E+. This implies x′(x) = 0 for all
x ∈ E+, which means that x′ = 0, a contradiction.

(3) =⇒ (1) If Eu is not norm dense in E, then by the Hahn–Banach
Theorem 1.25 there exists some nonzero f ∈ E′ which vanishes on Eu. We
can suppose that f+ > 0 holds. Now notice that

f+(u) = sup
{
f(x) : x ∈ E and 0 ≤ x ≤ u

}
= sup

{
f(x) : x ∈ Eu and 0 ≤ x ≤ u

}
= 0 ,

which is a contradiction. Hence, Eu is norm dense in E.

Here are a few consequences of the preceding result.

(a) If u is an order unit in a normed Riesz space, then u is a quasi-
interior point.

(b) If u is a quasi-interior point in a normed Riesz space E, then u+v
is likewise a quasi-interior point for each v ∈ E+.

Indeed, if 0 < x′ ∈ E′, then x′(u+v) ≥ x′(u) > 0 holds for each v ∈ E+.

(c) If E is a separable Banach lattice, then E has quasi-interior points.

3By virtue of this property a quasi-interior point also is known as a strictly
positive vector.
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To see this, pick a countable dense subset {x1, x2, . . .} of nonzero el-
ements, and put u =

∑∞
n=1 |xn|/2n‖xn‖. Clearly, 0 < x′ ∈ E′ implies

x′(u) > 0.

(d) If u is a quasi-interior point in a normed Riesz space E, then u is
a weak order unit.

Indeed, from ‖x − x ∧ nu‖ → 0, we see that x ∧ nu ↑ x holds for all
x ∈ E+.

(e) A weak order unit need not be a quasi-interior point. However, in
a Banach lattice with order continuous norm every weak order unit
is a quasi-interior point.

To see this, consider u ∈ C[0, 1] defined by u(t) = t. Clearly, u is a weak
order unit of C[0, 1], and moreover, the equality ‖1−1 ∧ nu‖∞ = 1, shows
that u is not a quasi-interior point.

(f) If u is a positive vector in a normed Riesz space E, then u is a
quasi-interior point in Eu (the norm closure of the ideal generated
by u in E).

The analogue of Theorem 4.84 for Banach lattices with quasi-interior
points is due to W. Haid [75] and is stated next.

Theorem 4.86 (Haid). Let E and F be Banach lattices with quasi-interior
points, and let S, T : E → F be two positive operators such that 0 ≤ S ≤ T
holds. Then for each x ∈ E+, 0 ≤ x′ ∈ F ′, and ε > 0 there exist positive
orthomorphisms M1, . . . , Mk on E and positive orthomorphisms L1, . . . , Lk

on F such that 〈
x′,
∣∣∣
(
S −

k∑
i=1

LiTMi

)
y
∣∣∣
〉

< ε

holds for all y ∈ E with |y| ≤ x.

Proof. Fix x ∈ E+, 0 ≤ x′ ∈ F ′, and ε > 0, and let u ∈ E+ be a quasi-
interior point of E. Since u + x is also a quasi-interior point, if we replace
u by u + x, we can assume that 0 ≤ x ≤ u holds. Similarly, if v is a
quasi-interior point of F , then replacing v by v +T (u), we can suppose that
0 ≤ T (u) ≤ v holds. Let Eu and Fv denote the ideals generated by u in E
and v in F , respectively. Then Eu and Fv with their sup norms are both
AM -spaces having units u and v, respectively.

Clearly, S and T carry Eu into Fv, and moreover if we replace S and T
restricted to Eu, then 0 ≤ S ≤ T holds. In addition, x′ restricted to Fv is
positive and continuous. Thus, by Theorem 4.83, there exist there exist pos-
itive multiplication operators M1, . . . , Mk on Eu and positive multiplication
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operators L1, . . . , Lk on Fv such that

〈
x′,
∣∣∣
(
S −

k∑
i=1

LiTMi

)
y
∣∣∣
〉

< ε

holds for all y ∈ E with |y| ≤ x.
Since Eu is dense in E, it follows from part (1) of Lemma 4.78 that

each Mi extends to a positive orthomorphism on E (which we denote by Mi

again). Similarly, each Li extends to a positive orthomorphism on F , and
the proof of the theorem is finished.

Finally, we close this section with one more approximation result.

Theorem 4.87. Let T : E → F be a positive operator from a Banach lattice
E which is either Dedekind σ-complete or has quasi-interior points into a Ba-
nach lattice F with order continuous norm. If a positive operator S :E→F
satisfies 0 ≤ S ≤ T , then given x ∈ E+ and ε > 0 there exist positive opera-
tors M1, . . . , Mk on E and order projections P1, . . . , Pk on F satisfying

0 ≤
k∑

i=1

PiTMi ≤ T and
∥∥∥
∣∣∣S −

k∑
i=1

PiTMi

∣∣∣x
∥∥∥ < ε .

Proof. Let 0 < x ∈ E and ε > 0 be fixed. By Theorem 4.18 there exists
some 0 < y′ ∈ F ′ satisfying

(|x′| − y′)+(Tx) < ε

for all x′ ∈ F ′ with ‖x′‖ ≤ 1.

(a) Suppose that E is Dedekind σ-complete. Let C : E → F be a com-
ponent of T , and let δ > 0. Then, by Theorem 2.3, there exist pairwise
disjoint order projections M1, . . . , Mk on E and order projections P1, . . . , Pk

on F such that

y′
(∣∣∣C −

k∑
i=1

PiTMi

∣∣∣x
)

< δ .

Since MiMj = 0 for i �= j, we have (PiTMi)∧(PjTMj)=(PiPj)T (MiMj)=0
for i �= j, and so

0 ≤
k∑

i=1

PiTMi =
k∨

i=1

PiTMi ≤ T .

Now by Theorem 3.61 there exists a convex combination
∑m

i=1 αiCi of
components of T such that

∥∥∥
∣∣∣S −

m∑
i=1

αiCi

∣∣∣
∥∥∥ < ε

2‖x‖·‖y′‖ .
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By the preceding case for each i = 1, . . . , m there exist order projections
M i

1, . . . , M
i
mi

on E and order projections P i
1, . . . , P

i
mi

on F satisfying

0 ≤
mi∑
j=1

P i
jTM i

j ≤ T and y′
(∣∣∣Ci −

mi∑
j=1

P i
jTM i

j

∣∣∣x
)

< ε
2 .

Let R =
∑m

i=1

∑mi
j=1 P i

jT (αiM
i
j), and note that 0 ≤ R ≤ T holds. Moreover,

we have

y′
(
|S −R|x

)
≤ y′

(∣∣∣S −
m∑

i=1

αiCi

∣∣∣x
)

+ y′
(∣∣∣

m∑
i=1

αi

(
Ci −

mi∑
j=1

P i
jTM i

j

)
x
∣∣∣
)

< ε
2 +

m∑
i=1

αiy
′
(∣∣∣Ci −

mi∑
j=1

P i
jTM i

j

∣∣∣x
)

< ε
2 + ε

2 = ε .

(b) Suppose that E has quasi-interior points. Pick a quasi-interior point
0 < e ∈ E, and note that we can assume that 0 ≤ x ≤ e holds. Then Ee

is an AM -space with unit e, and Ee = E. By Theorem 4.81 there exist
positive multiplication operators M1, . . . , Mk on Ee and order projections
P1, . . . , Pk on F with

0 ≤
k∑

i=1

PiTMi ≤ T and y′
(∣∣∣S −

k∑
i=1

PiTMi

∣∣∣x
)

< ε .

By Lemma 4.78 each Mi is continuous with respect to the norm induced
on Eu by E, and so each Mi has a unique continuous extension (which we
denote by Mi again) to Ee = E. This implies that we can suppose that each
Mi is defined on all of E.

So, if E is Dedekind σ-complete or has a quasi-interior point, then there
exist positive operators M1, . . . , Mk on E and order projections P1, . . . , Pk

on F such that

0 ≤
k∑

i=1

PiTMi ≤ T and y′
(∣∣∣S −

k∑
i=1

PiTMi

∣∣∣x
)

< ε . (�)

Also, from (�), we see that

∣∣∣S −
k∑

i=1

PiTMi

∣∣∣ ≤ S +
k∑

i=1

PiTMi ≤ 2T .
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Finally, for x′ ∈ F ′ with ‖x′‖ ≤ 1 we have

∣∣∣x′
(∣∣∣S −

k∑
i=1

PiTMi

∣∣∣x
)∣∣∣

≤ (|x′| − y′)+
(∣∣∣S −

k∑
i=1

PiTMi

∣∣∣x
)

+ y′
(∣∣∣S −

k∑
i=1

PiTMi

∣∣∣x
)

< (|x′| − y′)+(2Tx) + ε < 3ε .

Thus,
∥∥∣∣S −

∑k
i=1 PiTMi

∣∣x∥∥ ≤ 3ε holds, and the proof of the theorem is
finished.

Exercises

1. If T : E → F is a positive operator between normed Riesz spaces, then
show that

‖T‖ = sup
{
‖Tx‖ : x ∈ E+ and ‖x‖ ≤ 1

}
.

2. Let T : E → F be a positive operator between normed Riesz spaces. If E
is an AM -space with unit e, then show that ‖T‖ =

∥∥T (e)
∥∥.

3. If E is an AM -space and F is an AL-space, then show that Lb(E,F ) is
an AL-space.

4. Consider the operator u �→ Tu from �∞ to Lb(�p) (1 ≤ p ≤ ∞) defined
by

Tu(x1, x2, . . .) = (u1x1, u2x2, . . .) .

Show that u �→ Tu is a lattice isometry from �∞ into Lb(�p), and from
this (and Theorem 4.51) conclude that the Banach lattice Lb(�p) does not
have order continuous norm. Can you show directly that Lb(�p) does not
have order continuous norm?

5. Let E and F be two Banach lattices. If either
(a) F is a Dedekind complete AM -space with unit, or
(b) E is an AL-space and F is complemented in F ′′ (i.e., there exists a

positive projection of F ′′ with range F ),
then show that Lb(E,F ) = L(E,F ).

6. If an operator T on a Banach lattice is the pointwise limit of a sequence
of orthomorphisms, then show that T is also an orthomorphism.

7. Let E be an AM -space with unit e, and let L be a multiplication operator
on E′′. Show that for each 0 ≤ x′ ∈ E′ and each ε > 0 there exists
a multiplication operator M on E (which is positive if L is positive)
satisfying

〈
x′, |L−M |e

〉
< ε.

8. Let x be a vector in an AM -space E with unit. If M is the multiplication
operator on E determined by x (i.e., M(y) = xy holds for all y ∈ E),
then show that M ′′(y′′) = xy′′ also holds for all y′′ ∈ E′′. [Hint : Note
that M ′′ : E′′ → E′′ is an orthomorphism. ]
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9. Let E be a Banach lattice with order continuous norm, and let 0 < u ∈ E.
If M : Eu → Eu is a multiplication operator, then show that that there
exists a unique orthomorphism T on E such that T = M on Eu and
T = 0 on Ed

u.
10. Show that a reflexive Banach lattice E has a quasi-interior point if and

only if E′ has a quasi-interior point. [Hint : Use Theorems 4.15 and 4.85. ]
11. Let T : E → F be a continuous operator between normed Riesz spaces.

If T has dense range and u is a quasi-interior point of E, then show that
T (u) is a quasi-interior point of F . [Hint : Note that T ′ is one-to-one, and
so 0 < x′ ∈ F ′ implies x′(Tu) = T ′x′(u) > 0. ]

12. Let F be a Riesz subspace of a normed Riesz space E. If u ∈ F+ is a
quasi-interior point of E, then show that u is also a quasi-interior point
of F .

13. Let E be a normed Riesz space, and let Q denote the collection of all
quasi-interior points of E. Show that either Q = �© or else Q is norm
dense in E+.

14. Let S, T : E → F be two positive operators between Banach lattices such
that 0 ≤ S ≤ T holds. Assume that E has quasi-interior points and that
F is Dedekind complete.

Show that given x ∈ E+, 0 ≤ x′ ∈ F∼
n , and ε > 0, there exist positive

operators M1, . . . ,Mk on E and positive operators L1, . . . , Lk on F such
that

〈
x′,
∣∣S −

∑k
i=1 LiTMi

∣∣x〉 < ε.
15. Let S, T : E → F be two positive operators between Banach lattices such

that 0 ≤ S ≤ T holds. Assume that E is Dedekind complete and that F
has quasi-interior points.

Show that, given x ∈ E+, 0 ≤ x′ ∈ F ′, and ε > 0, there exist positive
operators M1, . . . ,Mk on E and positive operators L1, . . . , Lk on F such
that

〈
x′,
∣∣(S −

∑k
i=1 LiTMi

)
y
∣∣〉 < ε holds for all y ∈ E with |y| ≤ x.

16. Let E be an AM -space with unit, and let F be a Banach lattice with
order continuous norm, and let S, T : E → F be two positive operators
satisfying 0 ≤ S ≤ T . Show that given ε > 0 there exist positive operators
M1, . . . ,Mk on E and positive operators L1, . . . , Lk on F such that

∥∥∥S −
k∑

i=1

LiTMi

∥∥∥ < ε .

17. Let E be a reflexive Banach lattice, let F be an AL-space, and let
S, T : E → F be two positive operators satisfying 0 ≤ S ≤ T . Show
that given ε > 0 there exist positive operators M1, . . . ,Mk on E and
positive operators L1, . . . , Lk on F such that

∥∥∥S −
k∑

i=1

LiTMi

∥∥∥ < ε .

18. Let E be an AM -space with unit, and let F be a Banach lattice with
order continuous norm. For two positive operators S, T : E → F show
that the following statements are equivalent:
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(a) The operator T is in the band generated by S in Lb(E,F ).
(b) For every ε > 0 there exists some δ > 0 such that whenever posi-

tive orthomorphisms M1, . . . ,Mk on E and positive orthomorphisms
L1, . . . , Lk on F satisfy

∥∥∑k
i=1 LiSMi

∥∥ < δ, then we have

∥∥∥
k∑

i=1

LiTMi

∥∥∥ < ε .

[Hint : Mimic the proof of Theorem 2.11. ]
19. Let S, T : E → F be two positive operators between Banach lattices with

F Dedekind complete satisfying 0 ≤ S ≤ T . Show that for each ε > 0
there exists a convex combination

∑n
i=1 αiCi of components of T such

that ∥∥∥S −
n∑

i=1

αiCi

∥∥∥ < ε .

[Hint : Consider [0, T ] in Lb(E,F ) and use Theorem 3.61. ]
20. Assume that u is a quasi-interior point in a Banach lattice E. If the order

interval [0, u] is weakly compact, then show that E has order continuous
norm.



Chapter 5

Compactness Properties
of Positive Operators

A compact operator sends an arbitrary norm bounded sequence to a se-
quence with a norm convergent subsequence. For this reason, when op-
erators are associated with integral equations, the compact operators are
the most desirable. Besides being compact, an operator with some type of
compactness is more useful than an arbitrary operator.

This chapter studies various compactness properties of operators on Ba-
nach spaces. Specifically, the four sections of this chapter deal with compact
operators, weakly compact operators, L- and M -weakly compact operators,
and Dunford–Pettis operators. Particular emphasis is given to compactness
properties of a positive operator dominated by a compact operator. Also,
relationships between the ring and order ideals generated by a positive op-
erator are examined. As we shall see, when the ingredient of positivity is
added, the results are sharp and amazing.

5.1. Compact Operators

It will be convenient to agree that the phrase an operator T : X → Y between
Banach spaces is positive will mean that X and Y are both Banach lattices
and that T is a positive operator. Also, the expression an operator S between
two Riesz spaces is dominated by another operator T will simply mean that
S ≤ T . In this terminology, an operator between Riesz spaces is, of course,
regular if and only if it is dominated by a positive operator.

273
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Let T : X → Y be an operator between two normed vector spaces. Recall
that T is said to be a compact operator whenever T maps the closed unit
ball U of X onto a norm relatively compact subset of Y (i.e., whenever T (U)
is a norm compact subset of Y ). In other words, T is a compact operator if
and only if for every norm bounded sequence {xn} of X the sequence {Txn}
has a norm convergent subsequence in Y . In case Y is a Banach space, T is a
compact operator if and only if T (U) is a norm totally bounded subset of Y .
Clearly, every compact operator is norm bounded (and hence continuous).

We start our discussion with some basic properties of compact operators.
(Recall that L(X, Y ) denotes the normed vector space of all continuous
operators from X to Y ; L(X) stands for L(X, X).)

Theorem 5.1. For Banach spaces X, Y , and Z we have the following.

(1) The set of all compact operators from X to Y is a norm closed
vector subspace of L(X, Y ).

(2) If X−→S Y −→T Z are continuous operators and either S or T is
compact, then TS is likewise a compact operator.

Proof. (1) Clearly, the collection K(X, Y ) of all compact operators from
X to Y is a vector subspace of L(X, Y ). To see that K(X, Y ) is also norm
closed, let S be in the norm closure of K(X, Y ), and let ε > 0. Also, denote
by U and V the closed unit balls of X and Y , respectively.

Choose some T ∈ K(X, Y ) satisfying ‖S −T‖ < ε, and observe that
S(U) ⊆ T (U) + εV holds. Since T (U) is norm totally bounded, it follows
from Theorem 3.1 that S(U) is likewise norm totally bounded. That is,
S ∈ K(X, Y ) holds.

(2) Straightforward.

When we consider the continuous operators on a Banach space X, The-
orem 5.1 expresses the fact that the compact operators on X form a two
sided norm closed ring ideal in L(X).

The identity operator I : X → X on a Banach space is compact if and
only if X is finite dimensional. Also, if X and Y are Banach spaces, then
each finite rank operator of X ′ ⊗ Y (i.e., each operator T : X → Y of the
form T =

∑n
i=1 x′

i ⊗ yi with x′
1, . . . , x

′
n ∈ X ′ and y1, . . . , yn ∈ Y ) is clearly a

compact operator. Thus, the norm closure of X ′ ⊗ Y in L(X, Y ) consists of
compact operators. For a long time it was an open problem as to whether or
not the norm closure of X ′⊗Y was precisely the set of all compact operators.
However, in 1972 P. Enflo [61] proved with a famous counterexample that
in general this is not the case.
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An operator is compact if and only if its adjoint is compact. This useful
result is due to J. Schauder [175].

Theorem 5.2 (Schauder). A norm bounded operator T : X → Y between
Banach spaces is compact if and only if its adjoint T ′ : Y ′ → X ′ is likewise
a compact operators.

Proof. Denote by U and B the closed unit balls of X and Y ′, respectively.
To obtain the desired conclusion, put S={εU : ε > 0} and I={δB : δ > 0},
and then apply Theorem 3.27.

For our discussion, we shall need the following characterization of the
norm totally bounded subsets of a Banach space.

Theorem 5.3 (Grothendieck). A subset of a Banach space is norm totally
bounded if and only if it is included in the closed convex hull of a sequence
that converges in norm to zero.

Proof. Let A be a subset of a Banach space X. If there exists a sequence
{xn} of X with ‖xn‖ → 0 and A ⊆ co {xn}, then by Theorem 3.4 the set
A is norm totally bounded.

For the converse, assume that A is a norm totally bounded set. Let
U denote the closed unit ball of X. The desired sequence {xn} will be
constructed by an inductive argument as follows. Put A0 = A and k0 = 0.
Pick a finite subset Φ1 = {x1, . . . , xk1} of 2A0 with 2A0 ⊆ Φ1 + 2−1U .
Then, put A1 = (2A0 −Φ1) ∩ 2−1U , and note that by Theorem 3.2 the
set A1 is norm totally bounded. Now for the induction argument, assume
that Φn = {xkn−1+1, . . . , xkn} is a finite subset of the totally bounded set
2An−1 with 2An−1 ⊆ Φn + 2−nU . Put An = (2An−1 −Φn) ∩ 2−nU , and
note that An is a norm totally bounded set. Next, choose a finite subset
Φn+1 = {xkn+1, . . . , xkn+1} of 2An with the property 2An ⊆ Φn+1+2−n−1U ,
and put An+1 = (2An − Φn+1) ∩ 2−n−1U .

Now we claim that the sequence {xn} satisfies A ⊆ co {xn}. To see
this, note first that for each x ∈ An we have ‖x‖ ≤ 2−n, and so ‖xn‖ → 0.
On the other hand, if x ∈ A, then an easy argument shows that there
exist integers m1 < m2 < · · · with ki−1 < mi ≤ ki such that the element
xm1

2 + · · · + xmn
2n ∈ co {xn} satisfies∥∥x −

(xm1
2 + · · · + xmn

2n

)∥∥ ≤ 1
4n .

This implies that x ∈ co {xn}. That is, A ⊆ co {xn} holds, and the proof is
finished.

We now pass to a useful characterization of compact operators due to
T. Terzioglu [183].
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Theorem 5.4 (Terzioglu). An operator T : X → Y between two Banach
spaces is compact if and only if there exists a sequence {x′

n} of X ′ with
‖x′

n‖ → 0 and satisfying

‖Tx‖ ≤ sup
{
|x′

n(x)|
}

for all x ∈ X.

Proof. Assume first that T is a compact operator. Let B denote the closed
unit ball of Y ′. Then T ′(B) is (by Theorem 5.2) a norm totally bounded
subset of X ′, and so by Theorem 5.3 there exists a sequence {x′

n} of X ′ with
‖x′

n‖ → 0 and T ′(B) ⊆ co {x′
n}. Thus, for each x ∈ X we have

‖Tx‖ = sup
{
|y′(Tx)| : y′ ∈ B

}
= sup

{
|T ′y′(x)| : y′ ∈ B

}
≤ sup

{
|x′

n(x)|
}

.

For the converse, assume that there exists a sequence {x′
n} of X ′ with

‖x′
n‖ → 0 such that ‖Tx‖ ≤ sup

{
|x′

n(x)|
}

holds for all x ∈ X. Next,
consider the operator S : X → c0 defined by

S(x) =
(
x′

1(x), x′
2(x), . . .

)
.

Put u =
(
‖x′

1‖, ‖x′
2‖, . . .

)
∈ c0, and note that if U is the closed unit ball of

X, then S(U) ⊆ [−u, u] holds. Since the order interval [−u, u] is a compact
subset of c0 (see Exercise 14 of Section 3.2), it follows that S(U) is a norm
totally bounded subset of c0. In particular, S(U) is also a norm totally
bounded subset of the normed vector space Z =S(X). Now, define R : Z→Y
by

R(Sx) = Tx .

Since Sx = Sy implies x′
n(x− y) = 0 for all n, it follows from

‖Tx−Ty‖ ≤ sup
{
|x′

n(x− y)|
}

= 0

that Tx = Ty, and so the operator R is well defined. Moreover, the inequal-
ity ∥∥R(Sx)

∥∥ = ‖Tx‖ ≤ sup
{
|x′

n(x)|
}

= ‖Sx‖∞
shows that R : Z → Y is also continuous. Thus, T (U) = R(S(U)) is a norm
totally bounded subset of Y and so T is a compact operator.

In terms of factorizations, the compact operators are characterized as
follows.

Theorem 5.5. An operator T : X → Y between two Banach spaces is a
compact operator if and only if T factors with compact factors through a
closed vector subspace of c0.
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Proof. Let T : X → Y be a compact operator between two Banach spaces.
By Theorem 5.4, there exists a sequence {x′

n} of X ′ satisfying ‖x′
n‖ → 0 and

‖Tx‖ ≤ sup
{
|x′

n(x)|
}

(�)

for all x ∈ X. We can assume that x′
n �= 0 holds for all n. Put αn = ‖x′

n‖
1
2

and y′n = ‖x′
n‖−

1
2 · x′

n. Clearly, ‖y′n‖ = αn → 0. Now define the operator
S : X → c0 by

S(x) =
(
y′1(x), y′2(x), . . .

)
,

and note that ‖Sx‖∞ = sup
{
|y′n(x)|

}
holds. In view of Theorem 5.4, the

latter shows that S is a compact operator. Now let Z be the norm closure
of S(X) in c0, and note that S : X → Z is a compact operator.

Next, consider the operator R : S(X) → Y defined by R(Sx) = Tx. Note
that R is well defined. Indeed, if Sx = Sy holds, then we have x′

n(x− y) = 0
for all n, and so by (�) we see that Tx = Ty. On the other hand, if
M = sup

{
|αn|
}
, then |x′

n(x)| = |αny′n(x)| ≤ M |y′n(x)| holds for all n, and
so ∥∥R(Sx)

∥∥ = ‖Tx‖ ≤ sup
{
|x′

n(x)|
}
≤ M sup

{
|y′n(x)|

}
= M‖Sx‖∞ ,

which shows that R : S(X) → Y is also continuous. Hence, R has a contin-
uous extension to all of Z, which we denote by R again. Clearly, T = RS
holds, and it remains to be shown that R is a compact operator.

If the linear functional fn ∈ c′0 is defined by fn(λ1, λ2, . . .) = αnλn, then
‖fn‖ = αn → 0 holds, and moreover fn(Sx) = αny′n(x) = x′

n(x). Since
‖R(Sx)‖ = ‖Tx‖ ≤ sup

{
|fn(Sx)|

}
holds for all x ∈ X, it follows that

‖R(z)‖ ≤ sup
{
|fn(z)|

}
for all z ∈ Z. Hence, by Theorem 5.4, the operator

R : Z → Y is compact, as desired.

We now turn our discussion to lattice properties of compact operators
between Banach lattices. To start with, we may ask whether or not a com-
pact operator between Banach lattices possesses a modulus. It is somewhat
surprising to learn that the answer is negative. The following example (due
to U. Krengel [106]) shows that a compact operator need not have a mod-
ulus and also that a compact operator may have a modulus which is not
compact.

Example 5.6 (Krengel). For each n consider the finite dimensional Banach
lattice En = R

2n
(pointwise ordering, Euclidean norm). Let An be a 2n×2n

matrix with ±1 entries and orthogonal rows. For instance, the matrices An

can be constructed inductively as follows:

A1 =
[
1 1
1 −1

]
and An+1 =

[
An An

An −An

]
.
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For each n let Tn : En → En be the operator whose matrix (with respect to
the standard unit vectors of En) is 2−

n
2 An. Since 2−

n
2 An is an orthogonal

matrix, Tn is an onto isometry, and so ‖Tn‖ = 1 holds for all n. On the
other hand, |An| is the matrix with all of its entries equal to 1, and from
this an easy computation shows that ‖ |An| ‖ = 2n. Therefore, ‖ |Tn| ‖ = 2

n
2

holds for all n.
Next, consider the Banach lattice E = (E1⊕E2⊕· · · )0, and note that E

is Dedekind complete with order continuous norm. If α = (α1, α2, . . .) ∈ �∞
is fixed, then consider the operator T : E → E defined by

T (x1, x2, . . .) = (α1T1x1, α2T2x2, . . .) .

From

‖T (x1, x2, . . .)‖ = sup
{
|αn| · ‖Tnxn‖

}
≤ ‖α‖∞ · ‖(x1, x2, . . .)‖ ,

we see that T is a norm bounded operator. On the other hand, if limαn = 0,
then T is a compact operator. This can be easily seen by observing that the
operators Kn(x1, x2, . . .) = (α1T1x1, . . . , αnTnxn, 0, 0, . . .) are all compact
and that they satisfy ‖T −Kn‖ ≤ sup

{
|αi| : i ≥ n

}
.

Thus, if we put αn = 2−
n
2 , then T is a compact operator, and moreover

its modulus exists. In fact, an easy computation shows that

|T |(x1, x2, . . .) =
(
α1|T1|x1, α2|T2|x2, . . .

)
.

However, |T | is not a compact operator. To see this, for each n fix some
xn ∈ En with ‖xn‖ = 1 and ‖|Tn|(xn)‖ = 2

n
2 , and let x̂n denote the element

of E whose nth component is xn and every other zero. Then ‖x̂n‖ = 1 holds
in E, and for n > m we have∥∥|T |x̂n − |T |x̂m

∥∥ =
∥∥(0, . . . , 0,−αm|T |xm, 0, . . . , 0, αn|T |xn, 0, 0, . . .)

∥∥ = 1 .

This shows that |T | is not a compact operator.

Finally, arguing as above, we see that for αn = 2−
n
3 the operator T is

still compact, but its modulus does not exist.

By virtue of Example 4.73 we know that a continuous operator between
two AM -spaces need not be order bounded (and hence need not possess a
modulus). However, it is surprising to learn that whenever the range of a
compact operator is an AM -space, then the operator possesses a modulus
(which is also compact). This interesting result is due to U. Krengel [105].

Theorem 5.7 (Krengel). Let T : E → F be a compact operator from a
Banach lattice to an AM -space. Then the modulus of T exists and is a
compact operator. Moreover,

|T |(x) = sup
{
|Ty| : |y| ≤ x

}
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holds for all x ∈ E+.
In addition, in this case, the vector space of all compact operators from

E to F (with the r-norm) is a Banach lattice.

Proof. If x ∈ E+, then T [−x, x] is norm totally bounded in F , and so
according to Theorem 4.30 the supremum

|T |(x) = sup
{
|Ty| : |y| ≤ x

}
= sup T [−x, x]

exists in F . Thus, by Theorem 1.14, the modulus of T exists.
Now let U denote the closed the unit ball of E. To see that |T | is

a compact operator, note that if A denotes the set of all finite suprema of
T (U), then by Theorem 4.30 the norm closure A of A is compact. Therefore,
by Theorem 4.30 again, we see that |T |(x) ∈ A holds for all x ∈ U+. That is,
|T |(U+) ⊆ A holds, and from this it follows that |T | is a compact operator.

To see that the vector space of all compact operators from E to F is a
Banach lattice, repeat the arguments of the proof of Theorem 4.74.

As an application of the preceding theorem, let us establish the following
result dealing with the finite rank operators.

Theorem 5.8. Every finite rank operator between two Banach lattices has
a compact modulus.

Proof. Let T : E → F be a finite rank operator between two Banach lat-
tices. Pick a basis {x1, . . . , xn} for T (E), and put u = |x1|+ · · ·+ |xn|. Then
Fu (with the sup norm) is an AM -space, and from Theorem 3.28 it is easy
to see that the operator T : E → Fu is also compact. By Theorem 5.7 the
supremum

|T |(x) = sup
{
|Ty| : |y| ≤ x

}
exists in Fu (and hence in F ) for each x ∈ E+, and moreover |T | : E → Fu

is a compact operator. Thus, the operator T : E → F possesses a modulus.
Since ‖x‖ ≤ ‖u‖ · ‖x‖∞ holds for each x ∈ Fu, it follows that |T | : E → F is
also a compact operator.

The next result is a dual of Theorem 5.7, and also is due to U. Kren-
gel [105].

Theorem 5.9 (Krengel). If E is an AL-space and F is a Banach lattice
with order continuous norm, then every order bounded compact operator
from E to F has a compact modulus.

Moreover, in this case, the compact operators of Lb(E, F ) form a Banach
lattice.
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Proof. Let T : E → F be an order bounded compact operator from an AL-
space to a Banach lattice with order continuous norm. Since T ′ : F ′ → E′

is a compact operator and E′ is an AM -space, it follows from Theorem 5.7
that |T ′| is a compact operator. On the other hand, the order continuity
of the norm of F implies F ′ = F∼

n , and so by Theorem 1.76, we have
|T |′ = |T ′|. Thus, |T |′ is a compact operator, and hence |T | is likewise a
compact operator.

An important compactness property of order bounded operators, due to
P. G. Dodds and D. H. Fremlin [54], is described in the next theorem.

Theorem 5.10 (Dodds–Fremlin). Let E and F be two Riesz spaces with F
Dedekind complete. If τ is an order continuous locally convex-solid topology
on F , then for each x ∈ E+ the set

B =
{

T ∈ Lb(E, F ) : T [0, x] is τ -totally bounded
}

is a band of Lb(E, F ).

Proof. The proof below is a simplified version, due to A. R. Schep, of the
original proof of P. G. Dodds and D. H. Fremlin [54]. Let x ∈ E+ be fixed.
Clearly, B is a vector subspace of Lb(E, F ). The rest of the proof goes by
steps.

STEP 1. If T ∈ B and R, S ∈ Lb(E, F ) satisfy R + S = T and R ⊥ S,
then R, S ∈ B.

To see this, let V and W be two solid τ -neighborhoods of zero such that
W +W ⊆ V . Since τ is order continuous, it follows from Theorem 1.21 that
there exist x1, . . . , xn ∈ E+ such that

x =
n∑

i=1

xi and
n∑

i=1

|R|xi ∧ |S|xi ∈ W .

Next, choose another solid τ -neighborhood U of zero with U + · · ·+U ⊆ W ,
where the sum to the left has n summands. In view of T [0, xi] ⊆ T [0, x],
it follows that each T [0, xi] is a τ -totally bounded set. Therefore, for each
i = 1, . . . , n there exists a finite subset Φi of [0, xi] with T [0, xi] ⊆ T (Φi)+U .
Put

Φ =
{ n∑

i=1

yi : yi ∈ Φi for each i = 1, . . . , n
}

,

and note that Φ is a finite subset of [0, x].
Now if z ∈ [0, x], then use the Riesz decomposition property (see Theo-

rem 1.13) to write z =
∑n

i=1 zi with 0 ≤ zi ≤ xi for each i = 1, . . . , n. By
the above, for each i there exists some yi ∈ Φi with T (zi − yi) ∈ U . Let
y =
∑n

i=1 yi ∈ Φ, and note that z − y =
∑n

i=1(zi − yi) =
∑n

i=1 wi, where for
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simplicity we put wi = zi − yi. Thus, by taking into account that in a Riesz
space |u| − |u| ∧ |v| ≤ |u + v| holds, we obtain

∣∣R(z − y)
∣∣

≤
n∑

i=1

|R(wi)|

=
n∑

i=1

(
|R(wi)| − |R(wi)| ∧ |S(wi)|

)
+

n∑
i=1

|R(wi)| ∧ |S(wi)|

≤
n∑

i=1

∣∣(R + S)(wi)
∣∣+

n∑
i=1

|R|xi ∧ |S|xi

=
n∑

i=1

|T (wi)|+
n∑

i=1

|R|xi ∧ |S|xi ∈ U+· · ·+U+W ⊆ W +W ⊆ V .

Hence, R(z − y) ∈ V . This implies R[0, x] ⊆ R(Φ) + V , which shows that
R[0, x] is τ -totally bounded. That is, R ∈ B. Similarly, S ∈ B.

STEP 2. If T ∈ B, then T+ ∈ B. That is, B is a Riesz subspace of
Lb(E, F ).

The proof follows immediately from T = T+ + (−T−) and Step 1 by
observing that |T+| ∧ | − T−| = 0.

STEP 3. If {Tα} ⊆ B satisfies Tα ↑ T in Lb(E, F ), then T ∈ B.

To see this, let V and W be two solid τ -neighborhoods of zero with
W + W ⊆ V . Since τ is order continuous and Tα(x) ↑ T (x) holds in F ,
there exists some index β with T (x)−Tβ(x) ∈ W . In view of the τ -total
boundedness of Tβ [0, x], there exists a finite subset Φ of [0, x] such that
Tβ [0, x] ⊆ Tβ(Φ) + W . Now if y ∈ [0, x], then choose some z ∈ Φ with
Tβ(y− z) ∈ W and note that the relation

∣∣T (y)−Tβ(z)
∣∣ ≤ T (y)−Tβ(y) + |Tβ(y− z)|

≤ T (x)−Tβ(x) +
∣∣Tβ(y− z)

∣∣ ∈ W + W ⊆ V

implies T (y)−Tβ(y) ∈ V . Thus, T [0, x] ⊆ Tβ(Φ) + V , and hence T ∈ B.

STEP 4. If 0 ≤ S ≤ T holds in Lb(E, F ) with T ∈ B, then S ∈ B.

Indeed, by Theorem 2.9, there exists a sequence {Sn} of T -step functions
with 0 ≤ Sn ↑ S in Lb(E, F ). By Step 1 each Sn belongs to B, and by Step 3
it follows that S ∈ B. The proof of the theorem is now complete.

A useful property of operators that map order intervals to totally
bounded sets is described in the next result. Recall that the topology
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|σ|(F, F ′) on a Banach lattice F is the locally convex-solid topology of uni-
form convergence on the order intervals of F ′.

Theorem 5.11. Let S, T : E → F be two positive operators between Banach
lattices such that 0 ≤ S ≤ T holds. If T [0, x] is |σ|(F, F ′)-totally bounded
for each x ∈ E+, then S[0, x] is likewise |σ|(F, F ′)-totally bounded for each
x ∈ E+.

Proof. Consider S and T as operators from E to F ′′, and note that the
order continuous locally convex-solid topology |σ|(F ′′, F ′) induces |σ|(F, F ′)
on F . Clearly, T [0, x] is |σ|(F ′′, F ′)-totally bounded for each x ∈ E+, and
so, by Theorem 5.10, S[0, x] is |σ|(F ′′, F ′)-totally bounded for each x ∈ E+.
That is, S[0, x] is |σ|(F, F ′)-totally bounded for each x ∈ E+, as desired.

We continue with a useful lattice approximation property of positive
operators dominated by compact operators.

Lemma 5.12. Let S, T : E → F be two positive operators between Banach
lattices such that 0 ≤ S ≤ T holds. If T sends a subset A of E+ to a norm
totally bounded set, then for each ε > 0 there exists some u ∈ F+ such that∥∥(Sx−u)+

∥∥ < ε

holds for all x ∈ A.

Proof. Let ε > 0. Since T (A) is a norm totally bounded subset of F , there
exist x1, . . . , xn ∈ A such that for each x ∈ A we have ‖Tx − Txi‖ < ε for
some i. Put u = T

(∑n
i=1 xi

)
∈ F+. Now if x ∈ A, then pick some xi such

that ‖Tx − Txi‖ < ε, and note that

0 ≤ (Sx − u)+ ≤ (Tx − u)+ ≤ (Tx − Txi)+ ≤ |Tx − Txi| .

Thus, ‖(Sx − u)+‖ < ε holds for all x ∈ A, as claimed.

We are now in the position to establish some major results concerning
positive operators. The next result of the authors [9] states that if a positive
operator on a Banach lattice is dominated by a compact operator, then its
third power is also a compact operator.

Theorem 5.13 (Aliprantis–Burkinshaw). If a positive operator S on a Ba-
nach lattice is dominated by a compact operator, then S3 is a compact op-
erator.

Proof. Let S, T : E → E be two positive operators on a Banach lattice with
T compact and 0 ≤ S ≤ T . Since U ⊆ U+ −U+ holds, it is enough to show
that S3(U+) is a norm totally bounded set.
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To this end, let ε > 0. By Lemma 5.12, there exists some u ∈ F+ such
that ‖(Sx−u)+‖ < ε holds for all x ∈ U+. From the identity

Sx = Sx ∧ u + (Sx−u)+ ,

we see that S(U+) ⊆ [0, u] + εU . therefore,

S2(U+) ⊆ S[0, u] + εS(U) ⊆ S[0, u] + ε‖S‖U ,

and
S3(U+) ⊆ S2[0, u] + ε‖S‖2U . (�)

Now observe that if a norm bounded net {xα} satisfies |xα|−→w 0, then
the inequalities 0 ≤ S|xα| ≤ T |xα| and the compactness of T imply that
lim ‖Sxα‖ = 0. In other words, on every norm bounded subset D of E
the function S : D → E is continuous for the |σ|(E, E′)-topology on D and
the norm topology on E. Thus, by Theorem 3.3, the operator S carries
|σ|(E, E′)-totally bounded sets to norm totally bounded sets. Since T [0, u]
is norm totally bounded (and hence |σ|(E, E′)-totally bounded), it follows
from Theorem 5.11 that S[0, u] is likewise |σ|(E, E′)-totally bounded. There-
fore, by the above discussion, S2[0, u] = S(S[0, u]) must be a norm totally
bounded set. Now (�) (combined with part (4) of Theorem 3.1) shows that
S3(U+) is a norm totally bounded set, as desired.

A variation of the preceding result is described in the next theorem.

Theorem 5.14 (Aliprantis–Burkinshaw). If in the scheme of positive op-
erators

E−→S1 F−→S2 G−→S3 H

each operator Si is dominated by a compact operators, then S3S2S1 is also
a compact operator.

Proof. Assume that for each i = 1, 2, 3 there is some compact operator Ti

satisfying 0 ≤ Si ≤ Ti. Next, consider the Banach lattice L = E⊕F⊕G⊕H,
and then define the operators S, T : L → L via the matrices

S =




0 0 0 0
S1 0 0 0
0 S2 0 0
0 0 S3 0


 and




0 0 0 0
T1 0 0 0
0 T2 0 0
0 0 T3 0


 .

Clearly, T is a compact operator and 0 ≤ S ≤ T holds. Now, by Theo-
rem 5.13, the operator

S3 =




0 0 0 0
0 0 0 0
0 0 0 0

S3S2S1 0 0 0



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must be compact, and therefore S3S2S1 is also a compact operator.

The power of the preceding theorem lies in the fact that no extra condi-
tions were imposed on the Banach lattices. However, when order continuity
of some norm is assumed, then one can obtain sharper compactness the-
orems. These results are stated next. We start with the companion of
Theorem 5.14, which is also due to the authors [9].

Theorem 5.15 (Aliprantis–Burkinshaw). Let E, F , and G be Banach lat-
tices such that either E′ or G has order continuous norm. If in the scheme
of operators

E−→S1 F−→S2 G

each Si is dominated by a compact operator, then S2S1 is a compact operator.

Proof. Assume that for each i = 1, 2 there exists a compact operator Ti

satisfying 0 ≤ Si ≤ Ti, and let U and V denote the closed unit balls of
E and G, respectively. Assume first that G has order continuous, and let
ε > 0.

By Lemma 5.12, there exists some u ∈ F+ such that ‖(S1x − u)+‖ < ε
holds for all x ∈ U+. From the identity S1x = S1x ∧ u + (S1x−u)+, it is
easy to see that

S2S1(U+) ⊆ S2[0, u] + ε‖S2‖V . (��)
Since G has order continuous norm, it follows from Theorem 5.10 that
S2[0, u] is norm totally bounded. Therefore, from (��) we see that S2S1(U+)
is a norm totally bounded set, and so S2S1 is a compact operator.

To prove the case when E′ has order continuous norm, take adjoints and
apply the above conclusion to (S2S1)

′ = S′
1S

′
2.

The following special case of the preceding theorem is also useful.

Corollary 5.16. Let E be a Banach lattice such that either E or E′ has
order continuous norm. If a positive operator S : E → E is dominated by a
compact operator, then S2 is also a compact operator.

Next, we illustrate the limitations of the previous results with some
examples taken from [9]. The first one is associated with Theorem 5.15.

Example 5.17. Let {rn} denote the sequence of Rademacher functions on
[0, 1], that is, rn(x) = Sgn sin(2nπx) holds for each x ∈ [0, 1]. Define the
positive operators

�1−→S1 L2[0, 1]−→S2 �∞
via the formulas

S(α1, α2, . . .) =
∞∑

n=1

αnr+
n
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and

S2(f) =
(∫ 1

0
f(x)r+

1 (x) dx,

∫ 1

0
f(x)r+

2 (x) dx, . . .
)

for each (α1, α2, . . .) ∈ �1 and f ∈ L2[0, 1]. Similarly, define the positive
operators

�1−→T1 L2[0, 1]−→T2 �∞

by

T1(α1, α2, . . .) =
( ∞∑

n=1

αn

)
1 and T2(f) =

[∫ 1

0
f(x) dx

]
(1, 1, . . .) .

Clearly, T1 and T2 are both compact operators (each is a rank-one operator),
and 0 ≤ S1 ≤ T1 and 0 ≤ S2 ≤ T2 hold.

Now note that if {en} denotes the sequence of the basic unit vectors of
�1, then S1(en) = r+

n holds for each n. It follows that for n �= m we have

‖S2S1en − S2S1em‖∞ =
∥∥S2(r+

n − r+
m)
∥∥
∞

≥
∣∣∣
∫ 1

0

[
r+
n (x)− r+

m(x)
]
r+
n (x) dx

∣∣∣ = 1
4 .

This shows that S2S1 is not a compact operator (and therefore neither are
S1 and S2).

By Theorem 5.13 we know that if a positive operator on a Banach lattice
is dominated by a compact operator, then its cube is compact. The next
example shows that the power three cannot be reduced to two.

Example 5.18. Consider the operators S1, S2, T1, and T2 as they were in-
troduced in the preceding example, and let E = �1⊕L2[0, 1]⊕�∞. Note that
neither E nor E′ has order continuous norm. Now consider the operators
S, T : E → E defined via the matrices

S =


 0 0 0

S1 0 0
0 S2 0


 and


 0 0 0

T1 0 0
0 T2 0


 .

Clearly, 0 ≤ S ≤ T holds, T is compact, and S is not compact. On the
other hand, the matrix

S2 =


0 0 0

0 0 0
0 S2S1 0




shows that S2 is not a compact operator. Note also that S3 = 0.

It may happen that E has order continuous norm and two operators S
and T on E satisfy 0 ≤ S ≤ T with T compact and S noncompact. The next
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example is of this type, which also shows that in this respect Corollary 5.16
is the “best” possible.

Example 5.19. Let S1 and T1 be as in the Example 5.17, and then consider
the Banach lattice E = �1 ⊕L2[0, 1]. Clearly, E has order continuous norm.
Now define the operators S, T : E → E via the matrices

S =
[

0 0
S1 0

]
and

[
0 0
T1 0

]
.

Then 0 ≤ S ≤ T holds, and T is compact. However, it is easy to check that
S is not a compact operator.

A glance at the preceding example shows that E′ does not have order
continuous norm. This is not accidental. The following result of P. G. Dodds
and D. H. Fremlin [54] asserts that:

• If a Banach lattice E and its norm dual E′ have order continuous
norms and two operators S, T : E → E satisfy 0 ≤ S ≤ T and T is
compact, then S also must be compact.

This result in its general form is as follows.

Theorem 5.20 (Dodds–Fremlin). Let E and F be two Banach lattices with
E′ and F having order continuous norms. If a positive operator S : E → F is
dominated by a compact operator, then S is necessarily a compact operator.

Proof. Assume that the positive compact operator T : E → F satisfies
0 ≤ S ≤ T . Denote by U and V the closed unit balls of E and F , and let
ε > 0. By Lemma 5.12, there exists some u ∈ F+ satisfying ‖(Sx−u)+‖ < ε
for all x ∈ U+. From Sx = Sx ∧ u + (Sx−u)+, it follows that

S(U+) ⊆ u ∧ S(U+) + εV . (�)

Now observe that (by Theorem 5.2) T ′ : F ′ → E′ is a compact oper-
ator and that 0 ≤ S′ ≤ T ′ holds. Since E′ has order continuous norm,
it follows from Theorem 5.10 that S′ maps order intervals of F ′ to norm
totally bounded subsets of E′. Therefore, Theorem 3.27 (applied with
S = {rU : r > 0} and J =

{
[−x′, x′] : 0 ≤ x′ ∈ F ′}) shows that S(U+)

must be a |σ|(F, F ′)-totally bounded set, and hence u ∧ S(U+) is likewise
a |σ|(F, F ′)-totally bounded set. Since F has order continuous norm and
u ∧ S(U+) is order bounded, it follows from Theorem 4.17 that u ∧ S(U+)
is also norm totally bounded. By (�) we see that S(U+) is a norm totally
bounded set, as required.

Remark. Theorem 5.20 has an interesting history. It has certainly
influenced most of the current work on positive compact operators. Its
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“roots” seem to go back to the paper by W. A. J. Luxemburg and A. C. Za-
anen [131]. For integral operators it appeared in the Soviet literature
in the book of M. A. Kransoselskii, P. P. Zabreiko, E. I. Pustylnik, and
P. E. Sobolevskii [100, Theorem 5.10, p. 279], and the same result (in a
more general context) appeared in the work of R. J. Nagel and U. Schlot-
terbeck [145]; see also [174, Proposition 10.2, p. 291]. A few years later,
physical evidence led the mathematical physicists J. Avron, I. Herbst, and
B. Simon [28] to conjecture its validity for “good” Lp-spaces, and their con-
jecture was settled by L. D. Pitt [165] . Almost at the same time (and in-
dependently) P. G. Dodds and D. H. Fremlin [54] established Theorem 5.20
in its present general form. In its own turn, the paper of P. G. Dodds and
D. H. Fremlin inspired the basic works of the authors [9, 10, 11, 14, 15, 17]
on compactness of positive operators.

Finally, we close this section by establishing that a positive orthomor-
phism dominated by a compact operator is itself compact.

Theorem 5.21. Let S, T : E → E be two positive operators on a Banach
lattice such that 0 ≤ S ≤ T holds. If T is a compact operator and S is an
orthomorphism, then S is compact.

Proof. By taking adjoints we can assume without loss of generality that E
also is Dedekind complete.

Note first that if an order projection P satisfies 0≤P ≤K with K : E→E
compact, then P is also a compact operator. (This follows immediately from
P = P 3 and Theorem 5.13.) Since S is an orthomorphism, there exists
(by Theorem 4.77) some λ > 0 with 0 ≤ S ≤ λI. Now by Theorem 2.9
there exists a sequence {Sn} of I-step functions satisfying 0 ≤ Sn ≤ S and
0 ≤ S −Sn ≤ 1

nI for each n. By Theorem 1.44 each component of I is
an order projection, and so, by the preceding observations, every Sn is a
compact operator. Since ‖S −Sn‖ < 1

n holds for all n, it is easy to see that
S must be a compact operator.

Exercises

1. Show that a norm bounded subset A of a normed vector space X is norm
totally bounded if and only if for each ε > 0 there exists a finite dimen-
sional vector subspace Y of X satisfying A ⊆ εU + Y . [Hint : Assume
that the condition holds, and let ε > 0. Pick a finite dimensional vector
subspace Y so that A ⊆ εU + Y . Consider the set

B =
{
y ∈ Y : ∃ a ∈ A and u ∈ U with y = a− εu

}
,
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and note that B is a norm bounded subset of Y . Since Y is finite di-
mensional, it follows from Theorem 3.28 that B is norm totally bounded.
Now note that A ⊆ B + εU holds. ]

2. Let X1, . . . , Xn be arbitrary Banach spaces, and consider the Banach
space X = X1 ⊕ · · · ⊕ Xn. For each i, j = 1, . . . , n let Tij : Xj → Xi be
an operator.
(a) Show that the matrix

T =




T11 · · · T1n

...
...

Tn1 · · · Tnn




defines an operator on X, and that every operator T : X → X can
be represented (uniquely) as above by a matrix.

(b) Show that an operator T : X → X is continuous if and only if each
operator Tij is continuous.

(c) Show that an operator T : X → X is a compact operator if and only
if each Tij is a compact operator.

3. Show that every compact operator has a separable range.

4. Let X be a Banach space, and let T : X → c0 be a continuous operator.
Then show that T is a compact operator if and only if there exists a
sequence {x′

n} ⊆ X ′ with ‖x′
n‖ → 0 and such that

T (x) =
(
x′

1(x), x′
2(x), . . .

)
holds for all x ∈ X. [Hint : Use Exercise 14 of Section 3.2. ]

5. Let T : X → Y be a compact operator between Banach spaces. Show
that

‖T‖ = inf sup{‖x′
n‖} ,

where the infimum is taken over all null sequences {x′
n} ⊆ X ′ satisfying

‖Tx‖ ≤ sup
{
|x′

n(x)|
}

for all x ∈ X.

6. Show that every finite rank operator T : E → F from a Riesz space E to
a uniformly complete Riesz space F possesses a modulus. Is the modulus
necessarily a finite rank operator?

7. Let R,S, T : E → F be three operators on a Banach lattice such that
R ≤ S ≤ T holds. If R and T are both compact operators, then show
that S3 is a compact operator.

8. Show that on an infinite dimensional Banach lattice the identity operator
cannot be dominated by a positive compact operator.

9. Consider the operators S, T : �1 → �∞ defined by

S(x1, x2, . . .)=(x1, x2, . . .) and T (x1, x2, . . .)=
( ∞∑

n=1

xn,
∞∑

n=1

xn, . . .
)

.

Show that 0 ≤ S ≤ T holds, T is a compact operator, and that S is not
a compact operator. Why does this not contradict Theorem 5.20?
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10. (Lozanovsky [119]) Consider the classical “Fourier coefficients” operator
T : L1[0, 1] → c0 defined by

T (f) =
(∫ 1

0

f(x) sin x dx,

∫ 1

0

f(x) sin 2x dx, . . .
)

.

Establish the following remarkable properties of the operator T .
(a) T is norm bounded.
(b) T is not order bounded (and hence, by Theorem 5.7, T is not com-

pact and its modulus does not exist).
(c) The adjoint operator T ′ : �1 → L∞[0, 1] is order bounded (and hence

T is an example of a non-order bounded operator whose adjoint is
order bounded.)

(d) T is σ-order continuous (and hence T is an example of a σ-order
continuous operator which is not order bounded; compare this with
Exercise 1 of Section 1.5).

[Hint : To see (d), let uk−→o 0 in L1[0, 1]. Since L1[0, 1] has order con-
tinuous norm, we have lim ‖uk‖1 = 0, and so the set Ω = {0, u1, u2, . . .}
is a norm compact subset of L1[0, 1]. Now the sequence of functions{
sin(nx)

}
is norm bounded in L∞[0, 1] (= the norm dual of L1[0, 1]), and

hence it can be considered as an equicontinuous sequence on L1[0, 1]. In
particular,

{
sin(nx)

}
can be considered as a norm bounded equicontinu-

ous sequence of C(Ω), which satisfies lim
∫ 1

0
u(x) sin(nx) dx = 0 for each

u ∈ Ω. By the Ascoli–Arzelá theorem, the sequence
{
sin(nx)

}
converges

uniformly to zero on Ω. Thus, if vk is the sequence whose nth component
is sup

{∣∣∫ 1

0
ui(x) sin(nx) dx

∣∣ : i ≥ k
}
, then vk ∈ c0 holds for each k, and

from uk−→o 0 we see that vk ↓ 0 holds in c0. Now note that |Tuk| ≤ vk

holds for all k. ]

11. Consider two positive operators S, T : E → E on a Banach lattice such
that 0 ≤ S ≤ T holds. Assume that T maps the order intervals of E
to norm totally bounded sets and that for each ε > 0 there exists some
u ∈ E+ such that ‖(|Tx| −u)+‖ < ε holds for all ‖x‖ ≤ 1. Then, show
that T 2 and S3 are both compact operators.

12. Give an alternate proof of Theorem 5.10 using Theorem 4.81.

13. Consider an operator T : E → E on a Banach lattice having a compact
modulus. Then show that:
(a) T 3 is a compact operator.
(b) If either E or E′ has order continuous norm, then T 2 is a compact

operator.
(c) If both E and E′ have order continuous norms, then T is a compact

operator.

14. Let E be an atomless Banach lattice, and let T : E → E be a positive
compact operator. Show that if an orthomorphism S : E → E satisfies
0 ≤ S ≤ T , then S = 0.
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15. Let E and F be two Banach lattices with E′ and F having order contin-
uous norms. Show that the set

C(E,F )=
{
T ∈ Lb(E,F ) : ∃K1,K2 ≥ 0 compact with T =K1 −K2

}
is an ideal of Lb(E,F ).

Give an example of two Banach lattices E and F with F Dede-
kind complete for which the vector subspace C(E,F ) is not an ideal of
Lb(E,F ).

16. Assume that E is a Banach lattice such that E′ has order continuous
norm, and let F be an AL-space. Show that the collection of all order
bounded compact operators from E to F is a band of Lb(E,F ).

17. Let (E, τ) be a locally convex-solid Riesz space, and let S, T : E → E
be two positive continuous operators satisfying 0 ≤ S ≤ T . If T maps
bounded sets to totally bounded sets, then show that S3 likewise maps
bounded sets to totally bounded sets.

18. Show that for a Dedekind complete Banach lattice E the following state-
ments are equivalent.
(a) For each 0 < T ∈ Lb(E) there exists a positive compact operator

K : E → E with 0 < K ≤ T .
(b) There exists a net {Kα} of positive compact operators on E with

0 ≤ Kα ↑ I in Lb(E) (where, of course, I : E → E is the identity
operator).

(c) E is a discrete Banach lattice (i.e., for each 0 < u ∈ E there exists
a discrete vector v ∈ E with 0 < v ≤ u).

19. If a positive operator T : C[0, 1] → C[0, 1] satisfies ‖Tf‖∞ ≤ ‖f‖1 for all
f ∈ C[0, 1], then show that T 2 is a compact operator.

5.2. Weakly Compact Operators

Recall that if X is a normed vector space, then the weak topology σ(X, X ′)
on X is denoted by w and the weak∗ topology σ(X ′, X) on X ′ by w∗. We
start the section with a useful characterization of norm bounded operators.

Theorem 5.22. For an operator T : X → Y between two normed vector
spaces the following statements are equivalent:

(1) T is norm continuous, i.e., ‖xn‖ → 0 implies ‖Txn‖ → 0.

(2) T is weakly continuous, i.e., xα−→w 0 implies Txα−→w 0.

Proof. (1) =⇒ (2) Let xα−→w 0 in X, and let y′ ∈ Y ′. Since T is norm
continuous, T ′y′ ∈ X ′, and so the relation〈

Txα, y′
〉

=
〈
xα, T ′y′

〉
−→ 0

shows that Txα−→w 0 holds in Y .
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(2) =⇒ (1) Suppose that T is not norm continuous. Then, there exists
a sequence {xn} ⊆ X of unit vectors such that ‖Txn‖ ≥ n2 holds for all n.
From

∥∥ 1
nxn

∥∥ = 1
n → 0 and our hypothesis, it follows that 1

nTxn−→w 0 in
Y . In particular, the sequence

{
1
nTxn

}
is weakly bounded in Y , and hence

a norm bounded sequence. However, the latter contradicts the inequality∥∥ 1
nTxn

∥∥ ≥ n, and so T is norm continuous.

Let T : X → Y be an operator between two Banach spaces. Then, T is
said to be weakly compact whenever T carries the closed unit ball of X to
a weakly relatively compact subset of Y . Thus, according to the Eberlein–
Šmulian Theorem 3.40, T is weakly compact if and only if for every norm
bounded sequence {xn} of X the sequence {Txn} has a weakly convergent
subsequence in Y .

Clearly, every compact operator is weakly compact. Also, it should be
clear that every weakly compact operator is continuous. In [68] V. Gant-
macher characterized the weakly compact operators as follows.

Theorem 5.23 (Gantmacher). If T : X → Y is a continuous operator
between Banach spaces, then the following statements are equivalent:

(1) The operator T is weakly compact.

(2) The range of the double adjoint operator T ′′ : X ′′ → Y ′′ is included
in Y , i.e., T ′′(X ′′) ⊆ Y .

(3) The operator T ′ : (Y ′, w∗) → (X ′, w) is continuous.

(4) The operator T ′ is weakly compact.

Proof. (1) =⇒ (2) Let U and U ′′ denote the closed unit balls of X and X ′′,
respectively. If U denotes the w∗-closure of U in X ′′, then by Theorem 3.32
we have U = U ′′. Taking into account that T ′′ : (X ′′, w∗) → (Y ′′, w∗) is
continuous and that (by hypothesis) the w∗-closure of T (U) in Y ′′ lies in Y ,
we see that

T ′′(U ′′) = T ′′(U) ⊆ T ′′(U) = T (U) ⊆ Y .

Hence, T ′′(X ′′) ⊆ Y holds.

(2) =⇒ (3) Assume that y′α−→w
∗

0 in Y ′, and let x′′ ∈ X ′′. By our
hypothesis we have T ′′x′′ ∈ Y , and so〈

T ′y′α, x′′〉 =
〈
y′α, T ′′x′′〉 −→ 0 .

Therefore, T ′y′α−→w 0 holds in X ′.

(3) =⇒ (4) Let V denote the closed unit ball of Y ′. By Alaoglu’s The-
orem 3.20 we know that V is w∗-compact. Therefore, T (V ) is a weakly
compact subset of X ′, and so T ′ is a weakly compact operator.
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(4) =⇒ (1) From the above established implications, it follows imme-
diately that T ′′ : (X ′′, w∗) → (Y ′′, w) is continuous. Thus, T ′′(U ′′) is a
weakly compact subset of Y ′′. On the other hand, since Y is norm closed
in Y ′′, we see that Y is also weakly closed in Y ′′ (see Theorem 3.13),
and hence T ′′(U ′′) ∩ Y is a weakly compact subset of Y ′′. In view of
σ(Y ′′, Y ′) ⊆ σ(Y ′′, Y ′′′), it follows that T ′′(U ′′)∩Y is also σ(Y ′′, Y ′)-compact.
Now from T (U) = T ′′(U) ⊆ T ′′(U ′′) ∩ Y and the fact that σ(Y ′′, Y ′) and
σ(Y, Y ′) agree on Y , it follows that T (U) is a weakly relatively compact
subset of Y . That is, T is a weakly compact operator, and the proof of the
theorem is finished.

An immediate application of the preceding result is the following.

Theorem 5.24. If one of the Banach spaces X and Y is reflexive, then
every continuous operator from X to Y is weakly compact.

The weakly compact operators on a Banach space X exhibit ring prop-
erties similar to those of compact operators. They form a norm closed
two-sided ring ideal of L(X).

Theorem 5.25. If X, Y , and Z are Banach spaces, then:

(1) The collection of all weakly compact operators from X to Y is a
norm closed vector subspace of L(X, Y ).

(2) Whenever X−→S Y −→T Z are continuous operators and either S
or T is weakly compact, TS is likewise weakly compact.

Proof. (1) Let {Tn} ⊆ L(X, Y ) be a sequence of weakly compact operators
such that ‖Tn −T‖ → 0 holds in L(X, Y ). Clearly,∥∥T ′′

n −T ′′∥∥ = ‖Tn −T‖ → 0 .

Now let x′′ ∈ X ′′. Since (by Theorem 5.23) T ′′
n (X ′′) ⊆ Y holds for each

n, we have {T ′′
nx′′} ⊆ Y , and so from

∥∥T ′′
nx′′−T ′′x′′∥∥ → 0, we see that

T ′′x′′ ∈ Y . Thus, T ′′(X ′′) ⊆ Y holds, and so by Theorem 5.23 the operator
T is weakly compact.

(2) Routine.

The next theorem demonstrates how to construct weakly compact oper-
ators from weakly convergent sequences. This result will play an important
role later and guarantees an abundance of weakly compact operators.

Theorem 5.26. Let X be a Banach space, and let the sequences {xn}⊆X
and {x′

n} ⊆ X ′ satisfy xn−→w 0 in X and x′
n−→w 0 in X ′. Then the

operators
S : �1 → X and T : X → c0
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defined by

S(α1, α2, . . .) =
∞∑

n=1

αnxn and T (x) =
(
x′

1(x), x′
2(x), . . .

)

are both weakly compact.

Proof. The weak compactness of the operator S follows immediately from
Corollary 3.43.

For T note that T ′ : �1 → X ′ satisfies T ′(α1, α2, . . .) =
∑∞

n=1 αnx′
n,

and so by the preceding case T ′ is weakly compact. By Theorem 5.23 the
operator T is itself weakly compact.

A. Grothendieck proved in [72] that every continuous operator from
an AM -space to a weakly sequentially complete Banach space is weakly
compact. This result was extended by N. Ghoussoub and W. B. Johnson [69]
as follows.

Theorem 5.27 (Grothendieck–Ghoussoub–Johnson). Let T : E → X be a
continuous operator from a Banach lattice E to a Banach space X. If E′

has order continuous norm and c0 does not embed in X (in particular, if X
is weakly sequentially complete), then T is weakly compact.

Proof. By Theorem 4.63, the operator T admits a factorization

E X

F

T

S R

with F a KB-space and the factor S positive. To establish the weak com-
pactness of T , it suffices to show that the positive operator S : E → F is
weakly compact.

To this end, note first that (by Theorem 1.73) the adjoint operator
S′ : F ′ → E′ is order continuous. This easily implies that S′′(E′)∼n

)
⊆ (F ′)∼n

holds. On the other hand, the order continuity of the norm of E′ implies
(E′)∼n = E′′, and in addition we have (F ′)∼n = F ; see Theorem 4.60. Thus,
S′′(E′′) ⊆ F holds, which in view of Theorem 5.23 shows that S is a weakly
compact operator, as desired.

By virtue of Theorem 5.20 we know that if E and F are Banach lattices
such that E′ and F have order continuous norms, then every positive oper-
ator from E to F dominated by a compact operator is itself compact. The
assumption that E′ and F have order continuous norms is quite strong. As
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we shall see next, positive operators between this type of Banach lattices
are almost weakly compact.

Theorem 5.28. Let T : E → F be a positive operator between two Banach
lattices such that E′ and F have order continuous norms. If {xn} is a norm
bounded sequence, then {Txn} has a weak Cauchy subsequence.

Proof. Let {xn} be a norm bounded sequence of the Banach lattice E
and put x =

∑∞
n=1 2−n|Txn|. Then, by Theorem 4.15, there exists some

0 ≤ φ ∈ F ′ that is strictly positive on the ideal Fx generated by x in F .
Since E′ has order continuous norm, it follows from Theorem 4.24 that

there exists a subsequence {yn} of {xn} and some element x′′ ∈ E′′ such
that lim

n→∞
x′(yn) = x′′(x′) holds for all x′ ∈ [0, T ′φ]. But then for 0 ≤ f ≤ φ

we have
lim

n→∞
f(Tyn) = lim

n→∞
[T ′f ](yn) = x′′(T ′f) , (�)

and thus {Tyn} converges pointwise to T ′′x′′ on [0, φ].
Now let A be the ideal generated by φ in F ′, and let B be the band

generated by φ. Since T ′ : F ′ → E′ is an order continuous operator (see
Theorem 1.73), A is order dense in B, and E′ has order continuous norm, it
follows that T ′(B) ⊆ T ′(A) holds. The latter inclusion combined with (�)
implies that for each f ∈ B we have

lim
n→∞

f(Tyn) = [T ′′x′′](f) .

On the other hand, we have F ′ = B ⊕ Bd, and we claim that g(Txn) = 0
holds for all g ∈ Bd and all n. To see this, let 0 ≤ g ∈ Bd. Since F has order
continuous norm, it follows from Theorem 1.67 that Cφ ⊆ Ng holds. Taking
into account that φ is strictly positive on Fx, we see that Fx ∩ Nφ = {0},
and so Fx ⊆ Cφ ⊆ Ng must hold. This implies g(Txn) = 0 for all n. Hence,
lim g(Txn) = 0 holds for all g ∈ Bd. In view of F ′ = B ⊕ Bd, we see
that lim f(Tyn) exists in R for all f ∈ F ′, and so {Tyn} is a weak Cauchy
subsequence of {Txn}. This completes the proof of the theorem.

In terms of weakly compact operators the reflexive Banach lattices were
characterized by B. Kühn [107] as follows.

Theorem 5.29 (Kühn). For a Banach lattice E the following statements
hold:

(1) E is reflexive if and only if every positive operator from �1 to E is
weakly compact.

(2) E′ has order continuous norm (i.e., E′ is a KB-space) if and only if
every positive operator from E to �1 is weakly compact—and hence
compact.
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Proof. (1) The “only if” part follows from Theorem 5.24. For the “if” part
assume that every positive operator from �1 to E is weakly compact. We
first show that E is a KB-space.

To this end, let 0 ≤ xn ↑ satisfy sup{‖xn‖} < ∞. The operator T : �1→E
defined by T (α1, α2, . . .) =

∑∞
n=1 αnxn is positive, and so it must be weakly

compact. From T (en) = xn, it follows that {xn} has a weakly convergent
subsequence. If x is a weak limit of a subsequence of {xn}, then it is easy
to see that xn ↑ x and xn−→w x must hold. By Theorem 3.52 we have
lim ‖xn −x‖ = 0, and so E is a KB-space.

On the other hand, since �1 cannot be lattice embeddable in E (otherwise
�1 ought to be reflexive), it follows from Theorem 4.69 that E′ is also a KB-
space. The reflexivity of E now follows from Theorem 4.70.

(2) Assume that E′ has order continuous norm. If T : E → �1 is a
positive operator, then by Theorem 5.27 the operator T is weakly compact.

Now assume that every positive operator from E to �1 is weakly compact
(and hence compact by Theorem 4.32). To establish that E′ has order con-
tinuous norm, it suffices to show that every order bounded disjoint sequence
of E′ is norm convergent to zero; see Theorem 4.14. To this end, let {x′

n}
be a disjoint sequence of E′ satisfying 0 ≤ x′

n ≤ x′ for all n. Next, define
the positive operator T : E → �1 by

T (x) =
(
x′

1(x), x′
2(x), . . .

)
.

From
∑k

n=1 |x′
n(x)| ≤

∑k
n=1 x′

n(|x|) ≤ x′(|x|) < ∞, we see that indeed
T (x) ∈ �1. From our hypothesis, it follows that T is a compact operator,
and so if U is the closed unit ball of E, then T (U) is a norm totally bounded
subset of �1. Thus, given ε > 0, there exists (by Theorem 4.33) some k such
that
∑∞

n=k |x′
n(x)| < ε for all x ∈ U . So, ‖x′

n‖ = sup
{
|x′

n(x)| : x ∈ U
}
≤ ε

holds for all n ≥ k, and thus lim ‖x′
n‖ = 0. Therefore, E′ has also order

continuous norm.

We now turn our attention to the following problem:

• Let S, T : E → F be two positive operators between Banach lattices
such that 0 ≤ S ≤ T . If T is weakly compact, then what effect does
the weak compactness of T have on S?

Before giving some answers to this question, we shall present an example
to show that in general two positive operators can satisfy 0 ≤ S ≤ T with
T weakly compact and S not a weakly compact operator.

Example 5.30. Let {rn} denote the sequence of Rademacher functions on
[0, 1], i.e., rn(t) = Sgn sin(2nπt). Consider the operators S, T : L1[0, 1]→ �∞
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defined by

S(f) =
(∫ 1

0
f(x)r+

1 (x) dx,

∫ 1

0
f(x)r+

2 (x) dx, . . .
)

and

T (f) =
(∫ 1

0
f(x) dx,

∫ 1

0
f(x) dx, . . .

)
.

Then T is compact (it has rank one) and 0 ≤ S ≤ T holds. We claim that
S is not weakly compact.

To establish this, observe first that the sequence {un}, where we let
un = (0, . . . , 0, 1, 1, 1, . . .) with the 0 occupying the first n positions, has no
subsequence that converges weakly in �∞. Indeed, if some subsequence {wn}
of {un} converges weakly in �∞, then its weak limit must be zero, and so
wn ↓ 0 and ‖wn‖∞ = 1 contradict Theorem 3.52. Now consider the sequence
{fn} of L1[0, 1] defined by fn = 2nχ

[0,2−n]
. Clearly, ‖fn‖1 = 1 holds for each

n, and an easy computation shows that

S(fn) =
(
1, . . . , 1, 1

2 , 1
2 , 1

2 , . . .
)
,

with the 1 occupying the first n positions. On the other hand, it is easy
to see that the only possible weak limit of any subsequence of {S(fn)} is
e = (1, 1, 1, . . .). However, the relation S(fn)− e = −1

2un shows that no
subsequence of {S(fn)} can converge weakly, and thus S is not a weakly
compact operator.

The next result, due to A. W. Wickstead [193], tells us when every
positive operator dominated by a weakly compact operator is always weakly
compact.

Theorem 5.31 (Wickstead). For a pair of Banach lattices E and F the
following statements are equivalent.

(1) Either E′ or F has order continuous norm.

(2) Every positive operator from E to F dominated by a weakly compact
operator is weakly compact.

Proof. (1) =⇒ (2) Let S, T : E → F be two positive operators satisfying
0 ≤ S ≤ T with T weakly compact.

Assume first that F has order continuous norm. From Theorem 4.9 we
know that F is an ideal of F ′′. Therefore, if 0 ≤ x′′ ∈ E′′, then it follows
from 0 ≤ S′′x′′ ≤ T ′′x′′ ∈ F that S′′x′′ ∈ F . That is, S′′(E′′) ⊆ F holds,
and so, by Theorem 5.23, the operator S is weakly compact.
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Now assume that E′ has order continuous norm. Then the operators
S′, T ′ : F ′ → E′ satisfy 0 ≤ S′ ≤ T ′ and T ′ is weakly compact (see Theo-
rem 5.23). By the previous case, S′ is weakly compact, and, by applying
Theorem 5.23 once more, we see that S is likewise weakly compact.

(2) =⇒ (1) Assume by way of contradiction that neither E′ nor F has
order continuous norm. To finish the proof, we have to construct two positive
operators S, T : E → F with T weakly compact, S not weakly compact, and
0 ≤ S ≤ T .

Since the norm of E′ is not order continuous, there exists a positive
order bounded disjoint sequence {fn} of E′ satisfying ‖fn‖ = 1 for all n
(see Theorem 4.14). Let f =

∨∞
n=1 fn in E′. Also, since F does not have

order continuous norm there exists some 0 ≤ u ∈ F so that the order interval
[0, u] is not weakly compact; see Theorem 4.9. Thus, by Theorem 3.40, there
exists a sequence {un} ⊆ [0, u] without any weakly convergent subsequences.

Now consider the operators S, T : E → F , defined by

T (x) = f(x)u = [f ⊗ u](x) and S(x) =
∞∑

n=1

fn(x)un

for each x ∈ E. Note that in view of
∞∑

n=1

‖fn(x)un‖ ≤
∞∑

n=1

fn(|x|)‖u‖ = f(|x|)‖u‖ ,

the series defining S converges in norm for each x. Clearly, 0 ≤ S ≤ T holds
and T is a compact operator (it has rank one). On the other hand, we claim
that S is not weakly compact.

To see this, let gn =
∨

i�=n fi, and note that gn ∧fn = 0 and fn + gn = f .
Since ‖fn‖ = 1 holds, there exists some xn ∈ E+ with ‖xn‖ = 1 and
1− 1

2n < fn(xn) ≤ 1. From fn ∧ gn = 0, it follows (from Theorem 1.18) that
there exist vn, wn ∈ [0, xn] with vn + wn = xn and fn(vn) + gn(wn) < 1

2n .
Hence,

0 ≤ 1− fn(wn) = 1− fn(xn) + fn(vn) < 2 · 1
2n ,

and clearly ‖wn‖ ≤ 1. Now from the inequalities

‖Swn −un‖ =
∥∥∥[fn(wn)− 1

]
un +

∑
i�=n

fi(wn)ui

∥∥∥

≤ 2 · 1
2n ‖u‖ +

[∑
i�=n

fi(wn)
]
· ‖u‖

= 2 · 1
2n ‖u‖ + gn(wn)‖u‖ < 3 · 1

2n ‖u‖
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and the fact that {un} has no weakly convergent subsequences, we see that
{Swn} has no weakly convergent subsequences. That is, S is not a weakly
compact operator, and the proof of the theorem is finished.

The authors have shown in [10] that if a positive operator S on a Ba-
nach lattice is dominated by a weakly compact operators, then S2 is weakly
compact. The details follow.

Theorem 5.32 (Aliprantis–Burkinshaw). If a positive operator on a Ba-
nach lattice is dominated by a weakly compact operator, then its square is
weakly compact.

Proof. Assume that S, T : E → E are two positive operators on a Banach
lattice such that 0 ≤ S ≤ T holds and with T weakly compact. Let A denote
the ideal generated by E in E′′. The weak compactness of T implies (by
Theorem 5.23) that T ′′(E′′) ⊆ E. Thus, if 0 ≤ x′′ ∈ E′′, then (in view of
0 ≤ S′′ ≤ T ′′) we have 0 ≤ S′′x′′ ≤ T ′′x′′ ∈ E, and so

S′′(E′′) ⊆ A .

Next, we claim that S′′ also satisfies

S′′(A) ⊆ E . (�)

If (�) is established, then we see that

(S2)′′(E′′) = S′′[S′′(E′′)
]
⊆ S′′(A) ⊆ E ,

which means that S2 is a weakly compact operator.
The rest of the proof is devoted to establishing (�). To this end, let

0 ≤ x′′ ∈ A. Pick some y ∈ E with 0 ≤ x′′ ≤ y. Since T ′ is a weakly
compact operator, it follows that T ′(U ′) is a weakly compact subset of E′.
Now let ε > 0. Then, by Theorem 4.37, there exists some 0 ≤ g ∈ E′ such
that for each f ∈ U ′ we have(

|T ′f | − g
)+(y) < ε .

Also, according to Theorem 3.60, there exists some element x ∈ E satisfying
0 ≤ x ≤ y and g(|x′′−x|) < ε. Clearly, |x′′−x| ≤ y. Moreover, for each
f ∈ U ′ we have∣∣〈f, S′′(x−x′′)

〉∣∣ ≤
〈
|S′f |, |x−x′′|

〉
≤
〈
T ′|f |, |x−x′′|

〉
≤
(
T ′|f | − g

)+(|x−x′′|) + g(|x−x′′|)
< ε + ε = 2ε ,

from which it follows that ‖S(x)−S′′(x′′)‖ ≤ 2ε. This shows that S′′(x′′) is
in the norm closure of E in E′′. Since E is a Banach space, E is closed in
E′′, and so S′′(x′′) ∈ E. Thus, S′′(A) ⊆ E holds, as desired.
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The previous theorem can be stated in a more general form as follows.

Theorem 5.33. If in the scheme of positive operators

F−→S1 G−→S2 H

each Si is dominated by a weakly compact positive operator, then S2S1 is
weakly compact.

Proof. Assume that 0 ≤ Si ≤ Ti holds for i = 1, 2 with each Ti being
weakly compact. Consider the Banach lattice E = F ⊕ G ⊕ H, and define
the operators S, T : E → E via the matrices

S =


 0 0 0

S1 0 0
0 S2 0


 and T =


 0 0 0

T1 0 0
0 T2 0


 .

Then 0 ≤ S ≤ T holds, T is weakly compact and

S2 =


 0 0 0

0 0 0
S2S1 0 0


 .

By Theorem 5.32 the operator S2 is weakly compact, and so S2S1 is likewise
a weakly compact operator.

For weakly compact operators the analogue of Theorem 5.21 is as follows.

Theorem 5.34. A positive orthomorphism on a Banach lattice dominated
by a weakly compact operator is itself weakly compact.

Proof. Let S, T : E → E be two positive operators on a Banach lattice such
that 0 ≤ S ≤ T holds. Assume that S is an orthomorphism and that T is
weakly compact. By taking adjoints, we can assume that E is also Dedekind
complete. In addition, we can assume that 0 ≤ S ≤ I holds.

Now let ε > 0. Then, by Theorem 2.8, there exists an I-step function∑n
i=1 αiPi with 0 ≤

∑n
i=1 αiPi ≤ S and

∥∥S −
∑n

i=1 αiPi

∣∣| < ε. We can
suppose that αi > 0 holds for each i. From 0 ≤ Pi ≤ 1

αi
T and Theorem 5.32,

it follows that each Pi = P 2
i is weakly compact, and so

∑n
i=1 αiPi is also

weakly compact. By Theorem 5.25 the operator S is weakly compact.

When does a weakly compact operator have a weakly compact modulus?
The next result provides an answer.

Theorem 5.35. Every weakly compact operator from an AL-space to a
KB-space has a weakly compact modulus.
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Proof. Let T : E → F be a weakly compact operator from an AL-space
E to a KB-space F . By Theorem 4.75 we know that |T | exists. Now for
x ∈ E+ and 0 ≤ x′ ∈ F ′ = F∼

n , it follows from Theorem 1.21 that

x′(|T |x
)

= sup
{

x′
( n∑

i=1

|Txi|
)

: xi > 0 and
n∑

i=1

xi = x
}

= sup
{ n∑

i=1

‖xi‖x′( |Txi|
‖xi‖
)
: xi > 0 and

n∑
i=1

xi = x
}

≤
[
sup
{ n∑

i=1

‖xi‖ : xi > 0;
n∑

i=1

xi =x
}]

·
[
sup
{
x′(|Ty|) : ‖y‖≤1

}]
.

Therefore,
x′(|T |x

)
≤ ‖x‖ sup

{
x′(|Ty|) : ‖y‖ ≤ 1

}
(��)

holds for all x ∈ E+ and all 0 ≤ x′ ∈ F ′.
To prove that |T | is weakly compact, it suffices to show that |T |′′(E′′)⊆F

holds (see Theorem 5.23). So, let 0 ≤ x′′ ∈ E′′. Since F is a KB-space, we
have F = (F ′)∼n , and so, in order to prove that |T |′′(x′′) ∈ F , it suffices to
show that |T |′′(x′′) is order continuous on F ′.

To this end, let x′
α ↓ 0 in F ′, and let U denote the closed unit ball of

E. Since T (U) is a weakly relatively compact subset of F , it follows from
Theorem 4.38 that {x′

α} converges uniformly to zero on the solid hull of
T (U). From (��), we see that {x′

α} converges uniformly to zero on |T |(U+)
or, equivalently, that {|T |′(x′

α)} converges uniformly to zero on U+, i.e.,∥∥|T |′(x′
α)
∥∥ ↓ 0 holds. In particular, we have〈

x′
α, |T |′′(x′′)

〉
=
〈
|T |′(x′

α), x′′〉 ↓ 0 ,

which shows that |T |′′(x′′) ∈ (F ′)∼n , as required.

As an immediate consequence of the preceding result we have the fol-
lowing.

Corollary 5.36. The weakly compact operators from an AL-space E to
a KB-space F form a norm closed order ideal of Lb(E, F ) (and hence a
Banach lattice in their own right).

It should be noted that, in general, the weakly compact operators from
an AL-space E to a KB-space F do not form a band in Lb(E, F ). For
instance, if E = F = �1 and Tn(α1, α2, . . .) = (α1, . . . , αn, 0, 0, . . .), then
{Tn} is a sequence of positive compact operators on �1 satisfying 0 ≤ Tn ↑ I
in Lb(�1). However, the identity operator I : �1 → �1 is not weakly compact.

We now turn our attention to factoring weakly compact operators. Re-
call that a continuous operator T : X → Y between two Banach spaces is
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said to factor through a Banach space Z whenever there exist two con-
tinuous operators X−→R Z−→S Y such that T = SR holds. The continuous
operators R and S are called factors of T .

Clearly, every continuous operator that factors through an arbitrary re-
flexive Banach space is weakly compact. Remarkably, W. J. Davis, T. Figiel,
W. B. Johnson and A. Pelczynski [51] have shown that this factorization
property characterizes the weakly compact operators. The proof will be
based upon the following basic result.

Theorem 5.37 (Davis–Figiel–Johnson–Pelczynski). Let X be a Banach
space with closed unit ball U , and let W be a convex, circled, norm bounded
subset of X. For each n let Un = 2nW + 2−nU , and denote by ‖ · ‖n the
Minkowski functional of Un, i.e.,

‖x‖n := inf
{
λ > 0: x ∈ λUn

}
.

Put Ψ =
{
x ∈ X : |||x||| =

[∑∞
n=1 ‖x‖2

n

] 1
2 < ∞

}
, and let J : Ψ → X denote

the natural inclusion. Then:

(1) (Ψ, ||| · |||) is a Banach space and J is continuous.

(2) W is a subset of the closed unit ball of (Ψ, ||| · |||).
(3) J ′′ : Ψ′′ → X ′′ is one-to-one and satisfies (J ′′)−1(X) = Ψ.

(4) (Ψ, |||·|||) is reflexive if and only if W is a weakly relatively compact
subset of the Banach space X.

Proof. (1) Fix some M > 1 satisfying ‖w‖ ≤ M for all w ∈ W . If x ∈ λUn,
then pick w ∈ W and u ∈ U with x = λ(2nw + 2−nu) and note that the
inequality ‖x‖ ≤ λ(2nM + 2−n) ≤ 22nMλ implies ‖x‖ ≤ 22nM‖x‖n. Also,
x ∈ ‖x‖U ⊆ 2n‖x‖Un implies ‖x‖n ≤ 2n‖x‖, and so

2−n‖x‖n ≤ ‖x‖ ≤ 22nM‖x‖n

holds for each x ∈ X. Therefore, ‖·‖n is a norm on X which is equivalent to
the original norm of X. Let Xn denote the Banach space X equipped with
‖ · ‖n. Now consider the vector subspace Y of (X1 ⊕ X2 ⊕ · · · )2 consisting
of the “diagonal” elements, i.e.,

Y =
{
(x1, x2, . . .) ∈ (X1 ⊕ X2 ⊕ · · · )2 : xn = x1 for all n

}
.

It is easy to see that Y is a closed vector subspace of (X1 ⊕X2 ⊕ · · · )2, and
hence Y is a Banach space. On the other hand, the mapping x �→ (x, x, . . .)
from Ψ onto Y is a linear isomorphism, and hence the norm ||| · ||| makes Ψ
a Banach space.
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The continuity of the natural inclusion J : Ψ → X follows from the
inequality

15M2|||x|||2 = 15M2
∞∑

n=1

‖x‖2
n ≥ 15M2

∞∑
n=1

M−22−4n‖x‖2 = ‖x‖2 .

(2) Let w ∈ W . Then w ∈ 2−n(2nW ) ⊆ 2−nUn, and so ‖w‖n ≤ 2−n holds
for all n. Therefore,

|||w||| =
[ ∞∑

n=1

‖w‖2
n

] 1
2 ≤
[ ∞∑

n=1

2−2n
] 1

2 ≤ 1 ,

which shows that W is a subset of the closed unit ball of Ψ.

(3) Consider the operator T : Ψ → Z = (X1 ⊕ X2 ⊕ · · · )2 defined by

T (x) = (x, x, . . .) = (Jx, Jx, . . .) .

We claim that T ′′ : Ψ′′ → Z ′′ is given by

T ′′(x′′) =
(
J ′′x′′, J ′′x′′, . . .

)
. (�)

To see this, let x′′ ∈ Ψ′′. According to Theorem 4.6 we can write

T ′′x′′ = (x′′
1, x

′′
2, . . .) ∈ Z ′′ = (X ′′

1 ⊕ X ′′
2 ⊕ · · · )2 .

Clearly, x′′
n ∈ X ′′

n = X ′′ holds for each n. Now fix n, let x′ ∈ X ′
n = X ′

be arbitrary, and let z′ = (0, . . . , 0, x′, 0, 0, . . .) (where x′ occupies the nth

position). Then for each x ∈ Ψ we have

T ′z′(x) = z′(Tx) = x′(Jx) = J ′x′(x) ,

and so T ′z′ = J ′x′. On the other hand, by Theorem 4.6 we have

x′′
n(x′) =

〈
z′, T ′′x′′〉 =

〈
T ′z′, x′′〉 = x′′(J ′x′) = J ′′x′′(x′) .

Since x′ ∈ X ′ is arbitrary, we see that x′′
n = J ′′x′′ holds for each n, and thus

the validity of (�) has been established.
Now note that since T is an isometry, T ′′ is likewise an isometry (see

Exercise 17 of Section 3.2). In particular, since T ′′ is one-to-one, it follows
from (�) that J ′′ : Ψ′′ → X ′′ is one-to-one (which is, of course, equivalent to
saying that J ′(X ′) is dense in Ψ′).

Finally, to establish that (J ′′)−1(X) = Ψ holds, note first that the inclu-
sion Ψ ⊆ (J ′′)−1(X) is trivially true. On the other hand, if x′′ ∈ (J ′′)−1(X),
then J ′′x′′ ∈ X, and so it follows from (�) that J ′′x′′ ∈ Ψ and that
T (J ′′x′′) = T ′′(x′′) holds. Since T ′′ is one-to-one, we see that x′′ = J ′′x′′ ∈ Ψ.
Therefore, (J ′′)−1(X) ⊆ Ψ also holds, and so (J ′′)−1(X) = Ψ.

(4) By (2) we know that W is a norm bounded subset of Ψ. So, if Ψ
is reflexive, then the continuity of J : Ψ → X implies that W is a weakly
relatively compact subset of X.
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For the converse, assume that W is a weakly relatively compact subset
of X. Denote by C the closed unit ball of Ψ, i.e., C =

{
x ∈ Ψ: |||x||| ≤ 1

}
,

and by C ′′ the closed unit ball of Ψ′′. By Alaoglu’s Theorem 3.20, C ′′ is
w∗-compact. Since C is w∗-dense in C ′′ and J ′′ is w∗-continuous, it follows
that J(C) is w∗-dense in the w∗-compact set J ′′(C ′′). If W denotes the weak
closure of W in X, then W is weakly compact. Thus, if U ′′ is the closed
unit ball of X ′′ and

Vn = 2nW + 2−nU ′′ ,

then each Vn is a w∗-compact subset of X ′′. Also, note that J(C) ⊆ Vn

holds for each n. To see this, assume that x ∈ C. Then we have |||x||| ≤ 1,
and, in particular, we have ‖x‖n ≤ 1 for each n. Thus, for each δ > 1 there
exists some 1 < λn < δ with x ∈ λnUn ⊆ λnVn, and from this it follows that
x ∈ Vn. Now the w∗-denseness of J(C) in J ′′(C ′′) implies J ′′(C ′′) ⊆ Vn for
all n, and so

J ′′(C ′′) ⊆
∞⋂

n=1

Vn ⊆
∞⋂

n=1

(X + 2−nU ′′) = X .

The latter implies J ′′(Ψ′′) ⊆ X, and hence Ψ′′ ⊆ (J ′′)−1(X) = Ψ holds. This
shows that Ψ′′ = Ψ, proving that Ψ is reflexive. The proof of the theorem
is now complete.

An important application of the preceding result is that every weakly
compact operator factors through a reflexive Banach space.

Theorem 5.38 (Davis–Figiel–Johnson–Pelczynski). An operator between
two Banach spaces is weakly compact if and only if it factors through a
reflexive Banach space.

Proof. Let U be the closed unit ball of Y , and let T : Y → X be a weakly
compact operator. Put W = T (U), and note that W is a convex, circled,
and weakly relatively compact subset of X. Thus, the Banach space Ψ of
Theorem 5.37 is a reflexive Banach space. Now if S : Y → Ψ is defined by
S(y) = T (y), then S is a continuous operator, and the diagram

Y X

Ψ

T

S J

completes the proof of the theorem.

Every compact operator factors with compact factors through a reflexive
Banach space. This is due to T. Figiel [62] and W. B. Johnson [79].
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Theorem 5.39 (Figiel–Johnson). An operator between two Banach spaces
is compact if and only if it factors with compact factors through a separable
reflexive Banach space.

Proof. Let T : Y → X be a compact operator between two Banach spaces.
The proof is based upon the following diagram which will be explained below.

Y X

Z1 Z2

Z

T

S
S1

R1

R

Q
P

By Theorem 5.5 the operator T factors through a Banach space Z1 with
S and S1 compact. By the same theorem S1 factors through a Banach
space Z2 with R1 and R compact. Now by Theorem 5.38 the operator R1

factors through a reflexive Banach space Z. Then T = (RP )(QS) provides a
factorization of T with compact factors through the reflexive Banach space
Z. If we replace Z with the closure of QS(Y ), then Z can also be taken to
be separable.

The next result presents a useful connection between the totally bounded
subsets of X and Ψ.

Theorem 5.40. Let W be a convex, circled, norm bounded subset of a
Banach space X, and let (Ψ, ||| · |||) be the Banach space of Theorem 5.37
determined by W . Then a subset of W is totally bounded in X if and only
if it is totally bounded in Ψ.

In particular, if a compact operator T : Y → X maps the closed unit ball
of Y into W , then T considered as an operator from Y to Ψ is also compact.

Proof. Let A be a subset of W . Assume that A is totally bounded in X,
and let ε > 0. Since x, y ∈ W implies

x− y ∈ W + W = 2W = 21−n(2nW ) ⊆ 21−nUn ,

we see that ‖x− y‖n := inf{λ > 0: x− y ∈ λUn} ≤ 21−n holds for all n,
and so there exists some k satisfying

∑∞
n=k ‖x− y‖2

n < ε2 for all x, y ∈ W .
Pick x1, . . . , xm ∈ A such that A ⊆ {x1, . . . , xm} + ε2−2kU (where U is the
closed unit ball of X).

Now let x ∈ A be fixed. Choose some xi with ‖x−xi‖ < ε2−2k. Then
for each n = 1, . . . , k we have

x−xi ∈ ε2−2kU ⊆ ε2−k2−nU ⊆ ε2−kUn ,
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and so ‖x − xi‖n ≤ ε2−k holds for each n = 1, . . . , k. Therefore,

|||x−xi|||2 ≤
k∑

n=1

‖x−xi‖2
n +

∞∑
n=k

‖x−xi‖2
n < kε22−2k + ε2 < ε2 + ε2 < 4ε2

holds, and so |||x − xi||| < 2ε, from which it follows that A is also a totally
bounded subset of Ψ.

When X is a Banach lattice and W is also a solid set, then the Banach
space Ψ constructed in Theorem 5.37 is itself a Banach lattice.

Theorem 5.41. Let W be a convex, solid, and norm bounded subset of a
Banach lattice E, and let (Ψ, ||| · |||) be the Banach space of Theorem 5.37
determined by W . Then we have the following:

(1) (Ψ, ||| · |||) is a Banach lattice and Ψ is an ideal of E.

(2) The natural inclusion J : Ψ → E is an interval preserving lattice
homomorphism.

(3) J ′ : E′ → Ψ′ is also an interval preserving lattice homomorphism.

(4) If E has order continuous norm, then Ψ also has order continuous
norm.

Proof. (1) Let |x| ≤ |y| hold in E with y ∈ Ψ. If y ∈ λUn, then (in view of
the solidness of Un = 2nW +2−nU) we see that x ∈ λUn, and so ‖x‖n ≤ ‖y‖n

holds for all n. Therefore, |||x||| ≤ |||y|||. This shows that Ψ is an ideal of
E and (Ψ, ||| · |||) is a Banach lattice.

(2) Obvious.

(3) This follows immediately from Theorems 2.19 and 2.20.

(4) Assume that E has order continuous norm. Then, E is Dedekind
complete, and so Ψ (as an ideal of E) is likewise Dedekind complete. Let
xn ↓ 0 in Ψ. According to Theorem 4.9, we have to show that |||xn||| ↓ 0.

To this end, let ε > 0. Choose some m with
∑∞

k=m ‖x1‖2
k < ε2, and note

that

|||xn|||2 ≤
m∑

k=1

‖xn‖2
k +

∞∑
k=m

‖x1‖2
k ≤

∞∑
k=1

‖xn‖2
k + ε2 . (�)

Since xn ↓ 0 also holds in E, and each ‖ · ‖k is equivalent to the norm of
E, it follows that ‖xn‖k ↓ 0 holds for each k. The latter combined with (�)
shows that lim sup |||xn||| ≤ ε holds. Since ε > 0 is arbitrary, we see that
|||xn||| ↓ 0, and the proof is finished.

We have seen so far that a weakly compact operator between Banach
spaces factors through a reflexive Banach space. Can we conclude something
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stronger whenever we have a weakly compact operator between Banach lat-
tices? For instance, can we factor it through a reflexive Banach lattice? The
following question comes naturally.

When does a weakly compact operator factor through a reflexive Banach
lattice?

The rest of the section provides some answers to this question. As a
first application of the preceding result let us prove that a weakly compact
operator whose range is in a KB-space factors through a reflexive Banach
lattice.

Theorem 5.42. Every weakly compact operator T : X → E from a Banach
space X to a KB-space E factors through a reflexive Banach lattice.

If, in addition, T is a positive operator, then the factors can be taken to
be positive operators.

Proof. Let U be the closed unit ball of X, and let W be the convex solid hull
of T (U). By Theorems 4.60 and 4.39, we know that W is weakly relatively
compact, and so the Banach lattice (Ψ, ||| · |||) is reflexive. If S : X → Ψ is
defined by S(x) = T (x), then a glance at the diagram

X E

Ψ

T

S J

completes the proof of the theorem.

The following result of the authors [15] will be very basic for the factor-
ization of compact and weakly compact operators through reflexive Banach
lattices. For its proof we shall invoke the following simple property:

• A continuous operator T : X → Y between Banach spaces has a
dense range if and only if T ′ : Y ′ → X ′ is one-to-one.

Its proof: T (X) is weakly dense (and hence norm dense) in Y if and only
if y′ ∈ Y ′ and y′(Tx) = T ′y′(x) = 0 for all x ∈ X imply y′ = 0 (i.e., if and
only if y′ ∈ Y ′ and T ′y′ = 0 imply y′ = 0).

Theorem 5.43 (Aliprantis–Burkinshaw). Assume that W is the convex
solid hull of a weakly relatively compact subset of a Banach lattice E. If
(Ψ, ||| · |||) is the Banach lattice determined by W , then Ψ′ has order contin-
uous norm (and hence it is a KB-space).

Proof. By Theorem 5.41 the operator J ′ : E′ → Ψ′ is interval preserving,
and hence J ′(E′) is an ideal of Ψ′. Also, since J ′′ is one-to-one, we see that
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J ′(E′) is norm dense in Ψ′. Therefore, by Theorem 4.11, in order to establish
that Ψ′ has order continuous norm, it is enough to show that J ′x′

n ↓ 0 in
J ′(E′) implies |||J ′x′

n||| ↓ 0.
To see this, let J ′x′

n ↓ 0 in J ′(E′). Put x′ = inf
{
|x′

n|
}

in E′. Using the
fact that J ′ is a lattice homomorphism, we see that

0 ≤ J ′x′ ≤ J ′|x′
n| = |J ′x′

n| = J ′x′
n

holds for all n, and so J ′x′ = 0. On the other hand, if y′n =
∧n

i=1(|x′
i| −x′),

then y′n ↓ 0 in E′ and J ′y′n = T ′x′
n holds for each n. Thus, replacing {x′

n}
by {y′n}, we can assume that x′

n ↓ 0 holds in E′.
Now let x ∈ Ψ satisfy |||x||| ≤ 1. Then, ‖x‖k ≤ 1 also holds for each k,

and so x ∈ 2(2kW +2−kU). Therefore,

|J ′x′
n(x)| = |x′

n(x)| ≤ 2k+1 sup
{
|x′

n(w)| : w ∈ W
}

+ 21−k‖x′
1‖

holds for each k, and thus

|||J ′x′
n||| ≤ 2k+1 sup

{
|x′

n(w)| : w ∈ W
}

+ 21−k‖x′
1‖ (�)

holds for all k. Since W is the convex solid hull of a weakly relatively
compact subset of E, it follows from Theorem 4.38 that {x′

n} converges
uniformly to zero on W . The latter combined with (�) shows that

lim sup |||J ′x′
n||| ≤ 21−k‖x′

1‖

holds for all k. Thus, lim |||J ′x′
n||| = 0, as desired.

We continue with a special factorization theorem for weakly compact
operators due to the authors [15].

Theorem 5.44 (Aliprantis–Burkinshaw). Assume that E is a Banach lat-
tice such that E′ has order continuous norm. If T : E → X is a compact or
a weakly compact operator from E to a Banach space X, then there exist a
reflexive Banach lattice F and a factorization of T

E X

F

T

Q T1

such that:

(1) Q is a lattice homomorphism (and hence, a positive operator).

(2) T1 is positive if T is positive.

(3) T1 is compact if T is compact.
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Moreover, if X is a Banach lattice and another operator S : E → X
satisfies 0 ≤ S ≤ T , then S admits a factorization through the reflexive
Banach lattice F

E X

F

T

Q S1

with 0 ≤ S1 ≤ T1.

Proof. Clearly, T ′ : X ′ → E′ is weakly compact, and by Theorem 4.59 the
Banach lattice E′ is a KB-space. Thus, if B is the closed unit ball of X ′, then
the convex solid hull W of T ′(B) is a weakly relatively compact subset of
E′. Let (Ψ, ||| · |||) be the reflexive Banach lattice of Theorems 5.37 and 5.41
determined by W (where Ψ is also an ideal of E′). Next, define the operator
R : X ′ → (Ψ, ||| · |||) by R(x′) = T ′(x′), and note that R is continuous, that
R is positive if T is positive, and that (by Theorem 5.40) R is compact if T
is compact. Thus, we have the diagrams:

X ′ E′

Ψ

T ′

R J
and

E′′ X ′′

Ψ′

T ′′

J ′ R′

Since J ′(E′′) is dense in Ψ′ and T ′′(E′′) ⊆ X holds true, we see that
R′(Ψ′) ⊆ X. Now consider the reflexive Banach lattice F = Ψ′ and the
continuous operators E−→Q F−→T1 X, where T1(u) = R′(u) for u ∈ F and
Q(x) = J ′(x) for x ∈ E. By Theorem 5.41, Q is a lattice homomorphism.
Also, T1 is positive if T is positive, and T1 is compact if T is compact. Now
note that T = T1Q holds.

Next, assume that 0 ≤ S ≤ T . Then S′(X ′) ⊆ Ψ holds. On the other
hand, by Theorem 5.31 the operator S is also weakly compact, and hence
S′′(E′′) ⊆ X also holds. As above, this implies that the operator P : X ′ → Ψ
defined by P (x′) = S′(x′) satisfies P ′(Ψ′) ⊆ X. Define S1 : Ψ′ → X by
S1(y′) = P ′(y′), and note that 0 ≤ S1 ≤ T1 and S = S1Q hold. The proof
of the theorem is now complete.

We now come to a very important factorization theorem. It is due to
the authors [15].

Theorem 5.45 (Aliprantis–Burkinshaw). Consider the scheme of operators

X−→T1 E−→T2 Y
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between Banach spaces with each Ti (i = 1, 2) compact or weakly compact.
If E is a Banach lattice, then there exist a reflexive Banach lattice F and
a factorization of T2T1

X E Y

F

T1

S1

T2

S2

such that for each Si has the same compactness property as Ti and is positive
if Ti is positive.

Moreover, if X and Y are Banach lattices and another scheme of oper-
ators

X−→P1 E−→P2 Y

satisfies 0 ≤ Pi ≤ Ti (i = 1, 2), then there exists a factorization of P2P1

through the reflexive Banach lattice F

X E Y

F

P1

Q1

P2

Q2

such that 0 ≤ Qi ≤ Si holds for each i.

Proof. Denote by U the closed unit ball of X. Assume that T1 is compact or
weakly compact, and let W denote the convex solid hull of the weakly rela-
tively compact set T1(U). Then (by Theorem 5.43), Ψ′ has order continuous
norm, and T1 admits the factorization

X E

Ψ

T1

R J

where R(x) = T1(x) for all x ∈ X. Note that J is a positive operator and
that R is positive if T1 is positive.

The proof will be based upon the following diagram:
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X E Y

Ψ

F

T1

R

T2

T2J
J

Q

P

Since J is a positive operator, T2J is positive if and only if T2 is positive.
Also, T2J is compact or weakly compact, and so by Theorem 5.44 it admits
a factorization through a reflexive Banach lattice F such that Q is positive,
P is positive if T2 is positive, and P is compact if T2 is compact. Now note
that the desired factorization is through the reflexive Banach lattice F with
factors S1 = QR and S2 = P .

Next, assume that X and Y are Banach lattices and that another scheme
of operators X−→P1 E−→P2 Y satisfies 0≤Pi ≤Ti (i=1, 2). From 0≤P1 ≤
T1, we see that P1(X)⊆Ψ holds. Thus, if A : X → Ψ is defined by A(x)=
P1(x), then 0 ≤ A ≤ R holds, and so Q1 = QA satisfies 0 ≤ Q1 ≤ S1. Now
note that 0 ≤ P2J ≤ T2J holds, and therefore by Theorem 5.44 the operator
P2J admits a factorization P2J = Q2Q through F with 0 ≤ Q2 ≤ P = S2.
to complete the proof, note that P2P1 = Q2Q1 holds.

An immediate consequence of the preceding result is that the square of
a weakly compact operator on a Banach lattice factors through a reflexive
Banach lattice.

Corollary 5.46. If T : E → E is a weakly compact operator on a Banach
lattice, then T 2 factors (with positive factors if T is positive) through a
reflexive Banach lattice.

The corresponding result for compact operators is the following.

Corollary 5.47. If T : E → E is a compact operator on a Banach lattice,
then T 2 factors with compact factors through a reflexive Banach lattice.

If T is also positive, then the factors can be taken to be positive compact
operators.

The next consequence of Theorem 5.45 generalizes Theorem 5.33.

Theorem 5.48. Consider the scheme of positive operators

E−→S1 F−→S2 H

between Banach lattices. If each Si is dominated by a weakly compact oper-
ator, then S2S1 factors through a reflexive Banach lattice (and hence S2S1

is weakly compact).
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Using the main factorization theorem, we can also generalize Theo-
rem 5.15 as follows.

Theorem 5.49. Consider the scheme of positive operators

E−→S1 G−→S2 H

between Banach lattices. If H has order continuous norm, S1 is dominated
by a weakly compact operator, and S2 is dominated by a compact operator,
then S2S1 is a compact operator.

Dually, if E′ has order continuous norm, S1 is dominated by a compact
operator, and S2 is dominated by a weakly compact operator, then S2S1 is a
compact operator.

Proof. By Theorem 5.45 there exist a reflexive Banach lattice F and a
factorization

E G H

F

S1

T1

S2

T2

with T2 positive and dominated by a compact operator. By Theorem 5.20,
T2 is compact, and hence S2S1 = T2T1 is also compact.

We continue with a variation (due to W. Haid [75]) of Theorem 5.14.

Theorem 5.50 (Haid). Consider the scheme of positive operators

E−→S1 F−→S2 G−→S3 H

between Banach lattices. If S1 and S3 are dominated by weakly compact
operators and S2 is dominated by a compact operator, then S3S2S1 is a
compact operator.

Proof. The proof is based upon the following diagram:

E F G H

X Y

S1

T1

S2 S3

R

T3T2

According to Theorem 5.45 the scheme of operators E−→S1 F−→S2 G factors
through a reflexive Banach lattice X with T2 positive and dominated by
a compact operator. Similarly, the scheme of operators X−→T2 G−→S3 H
factors through a reflexive Banach lattice Y with R positive and dominated
by a compact operator. By Theorem 5.20 the operator R must be a compact
operator, and so S3S2S1 = T3RT1 must be likewise compact.
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Finally, we close the section with an example (due to M. Tala-
grand [182]) of a positive weakly compact operator that does not factor
through any reflexive Banach lattice.

Example 5.51 (Talagrand). The construction of the operator is based upon
the following remarkable result:

• There exists a weakly compact subset W of C[0, 1]+ such that when-
ever E is a reflexive Banach lattice and S : E → C[0, 1] is a con-
tinuous operator, then S(U) does not include W (i.e., W �⊆ S(U)).

For the proof of the existence of the set W see [182].
The construction of the operator now goes as follows. Fix a weakly

compact subset W of C[0, 1]+ with the above property, and let {xn} be a
norm dense sequence in W . Now define the positive operator T : �1 → C[0, 1]
by

T (α1, α2, . . .) =
∞∑

n=1

αnxn .

Clearly, Ten = xn holds for each n. An easy application of Theorem 3.42
shows that T is also weakly compact, and we claim that T cannot be factored
through any reflexive Banach lattice.

To see this, assume by way of contradiction that T admits a factorization

�1 C[0, 1]

E

T

R S

through a reflexive Banach lattice E. Replacing R by R/‖R‖ and S by
‖R‖S, we can assume that ‖R‖ = 1. Thus, ‖Ren‖ ≤ 1 holds for all n, and
from SRen = Ten = xn, we see that {xn} ⊆ S(U) (where U is the closed
unit ball of E). The latter implies W ⊆ S(U), contrary to the property
of W . Therefore, the positive weakly compact operator T does not factor
through any reflexive Banach lattice.

A consequence of Example 5.51 is that the preceding results on factor-
izations of positive weakly compact operators are the best possible.

Exercises

1. Show that a Banach space X is a Grothendieck space (i.e., that weak∗

and weak convergence of sequences in X ′ coincide) if and only if every
continuous operator from X to c0 is weakly compact.

2. For a Banach space X prove the following statements:
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(a) An operator T : X → �1 is weakly compact if and only if T is com-
pact.

(b) An operator T : c0 → X is weakly compact if and only if T is com-
pact.

3. Show that every continuous operator from C[0, 1] to �1 is compact.
4. (Lozanovsky [122, 123]) Show that a Banach lattice E is a KB-space if

and only if every positive operator from c0 to E is weakly compact.
5. Show that a Dedekind σ-complete Banach lattice E has order continu-

ous norm if and only if every positive operator from �∞ to E is weakly
compact.

6. Show that the operator T of Example 4.73 is not weakly compact. [Hint :
If fn ∈ C[0, 1] satisfies 0 ≤ fn ≤ 1, fn(x) = 0 for 0 ≤ x ≤ 1

n−1 , and
fn(x) = 1 for 1

n ≤ x ≤ 1, then note that Tfn = (1, . . . , 1, 0, 0, . . .), where
the 1 occupy the first n positions. ]

7. Let T : E → F be a positive operator from an AM -space E into a Banach
lattice F with order continuous norm. If either E has a unit or F is a
KB-space, then show that T is a weakly compact operator.

8. Let E be a Banach lattice such that E′ has order continuous norm, and
let F be an AM -space with order continuous norm. If T : E → F is
an order bounded weakly compact operator, then show that its modulus
exists and is weakly compact. [Hint : Use Theorems 5.35 and 1.76. ]

9. If the modulus of an operator T : E → E on a Banach lattice exists and
is weakly compact, then show that T 2 is also weakly compact.

10. (Buhvalov [45]) Let W be a convex, circled, norm bounded subset of a
Banach space X, and let (Ψ, ||| · |||) be the Banach space of Theorem 5.37
determined by W . If ‖ · ‖ denotes the norm of X, then show that ‖ · ‖
and ||| · ||| induce the same topology on W .

11. Let W and (Ψ, ||| · |||) be as in the preceding exercise. Then, show that
σ(Ψ,Ψ′) and σ(X,X ′) agree on every norm bounded subset of Ψ. [Hint :
Use the fact that J : Ψ → X is continuous and that J ′(X ′) is dense in
Ψ′. ]

12. Generalize Theorem 5.43 as follows: Let E be a Banach lattice, let A be
the closed convex solid hull of a weakly relatively compact subset of E, and
let W be a convex solid subset of A. If (Ψ, ||| · |||) is the Banach lattice
determined by W , then show that Ψ′ is a KB-space.

13. Let W be a convex, solid, and norm bounded subset of a Banach lattice
E, and let Ψ be the Banach lattice determined by W as in Theorem 5.41.
If E is a KB-space, then show that Ψ is likewise a KB-space. [Hint : Let
{xn} be a norm bounded sequence of Ψ+ satisfying 0 ≤ xn ↑. It follows
that {xn} is a norm bounded sequence of E, and so 0 ≤ xn ↑ x holds
in E. It suffices to show that x ∈ Ψ. Since each norm ‖ · ‖k is order
continuous, we have ‖xn‖k ↑ ‖x‖k for each k. Thus, for each m we have

m∑
k=1

‖x‖2
k = lim

n→∞

[ m∑
k=1

‖xn‖2
k

]
≤ lim

n→∞
|||xn|||2 < ∞ ,
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and from this it follows that x ∈ Ψ. ]

14. Let W be a convex, solid, and norm bounded subset of a Banach lattice
E, and let Ψ be the Banach lattice determined by W as in Theorem 5.41.
If E′ is a KB-space, then show that Ψ′ is likewise a KB-space. [Hint : If
x′

n ↓ 0 holds in E′, then {x′
n} converges uniformly to zero on W . Now

repeat the proof of Theorem 5.43. ]

15. Consider a positive operator T : E → F between Banach lattices. If E′

and F have order continuous norms, then show that T admits a factor-
ization through a Banach lattice G

E F

G

T

R S

such that G and G′ both have order continuous norms with R and S
being positive operators. [Hint : Denote by U the closed unit ball of E.
Let W be the convex solid hull of T (U), and let Ψ be the Banach lattice
generated by W as in Theorem 5.41. According to this theorem, Ψ has
order continuous norm. Now by Theorem 1.73 the operator T ′ : F ′ → E′

is order continuous, and so x′
n ↓ 0 in F ′ implies ‖T ′x′

n‖ ↓ 0. In particular,
if x′

n ↓ 0 holds in F ′, then {x′
n} converges uniformly to zero on W , and,

by repeating the proof of Theorem 5.43, we see that |||J ′x′
n||| ↓ 0. This

implies that Ψ′ has order continuous norm. ]

16. Let T : E → F be a positive weakly compact operator between two Ba-
nach lattices. If F has order continuous norm, then show that T factors
with positive factors through a reflexive Banach lattice. [Hint : Use The-
orems 4.39(1) and 5.41. ]

17. Let T : E → X be a weakly compact operator from a Banach lattice to
a Banach space. Then, show that T admits a factorization through a
KB-space F

E X

F

T

Q S

with Q a lattice homomorphism and with the factor S weakly compact
(and with S positive if T is also positive). [Hint : Consider the weakly
compact operator T ′ : X ′ → E′, and let W be the convex solid hull of
T ′(U ′). By Theorem 5.43 the norm dual of (Ψ, ||| · |||) is a KB-space, and
moreover we have the factorization

X ′ E′

Ψ

T ′

R J
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where R(x′) = T ′(x′). From Exercise 11 of this section, it follows that
R is weakly compact. Since T ′′(E′′) ⊆ X holds and J ′(E′′) is dense in
Ψ′, we see that R′(Ψ′) ⊆ X. Now, to complete the proof consider the
diagram

E X

Ψ′

T

J ′ R′

and note that J ′ is a lattice homomorphism. ]

18. For a Banach lattice E with order continuous norm establish the following
statements:
(a) The convex solid hull of a norm totally bounded subset of E is weakly

relatively compact.
(b) Every compact operator T : X → E admits a factorization through

a separable reflexive Banach lattice F

X E

F

T

S Q

such that:
(i) Q is a lattice homomorphism (and hence, a positive operator).
(ii) S is a compact operator.
(iii) S is positive if T is also positive.

Prove a similar result if T is a positive operator dominated by a
compact operator.

19. (Ghoussoub–Johnson [69]) Generalize Theorem 5.27 as follows: Assume
that T : E → X is a continuous operator from a Banach lattice E to a
Banach space X. If E′ has order continuous norm and c0 does not embed
in X, then show that T factors through a reflexive Banach lattice.

20. A Banach space X is said to be weakly compactly generated whenever
X has a weakly relatively compact subset whose linear span is dense in X.

Show that a Banach space X is weakly compactly generated if and
only if there exists a continuous operator T : Y → X from a reflexive
Banach space Y to X whose range is dense in X. [Hint : Let A be a
weakly relatively compact subset of X whose linear span is dense in X.
By Theorem 3.42 the convex circled hull W of A is weakly relatively
compact. Now, consider the operator J : Ψ → X. ]

21. Let T : E → E be a weakly compact operator on a Banach lattice. If
the ideal generated by the range of T coincides with E, then show that
T factors (with positive factors if T is also positive) though a reflexive
Banach lattice.
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5.3.

Thus far, we have dealt with weakly compact operators in a general set-
ting. However, many additional useful results hold true for special classes
of weakly compact operators. The main objective of this section is to study
the following three classes of operators: operators that carry order intervals
to weakly relatively compact sets, L- and M -weakly compact operators, and
semicompact operators.

As noted previously, among the important subsets of a Banach lattice are
its order intervals. Therefore, operators that carry order intervals to weakly
relatively compact sets arise naturally. These operators will be discussed
next.

Theorem 5.52. If T : E → X is a continuous operator from a Banach
lattice to a Banach space and x ∈ E+, then T [0, x] is a weakly relatively
compact subset of X if and only if for every disjoint sequence {xn} of [0, x]
we have lim ‖Txn‖ = 0.

Proof. Consider the ideal Ex generated by x in E. Then, Ex with the norm
‖y‖∞ = inf

{
λ > 0: |y| ≤ λx

}
is an AM -space having x as unit and [−x, x]

as its closed unit ball.
The relative weak compactness of T [0, x] is equivalent to saying that the

restriction operator T : Ex → X is a weakly compact operator, and this in
turn is equivalent to T ′ : X ′ → E′

x being weakly compact. On the other hand,
if U ′ denotes the closed unit ball of X ′, then T ′(U ′) is (by Theorem 4.41)
weakly relatively compact if and only if every disjoint sequence of [0, x]
converges uniformly to zero on T ′(U ′), i.e., if and only if lim ‖Txn‖ = 0
holds for each disjoint sequence {xn} of [0, x].

If a positive operator T carries an order interval [0, x] to a weakly rela-
tively compact set, then every positive operator dominated by T also carries
[0, x] to a weakly relatively compact set.

Corollary 5.53. Let S, T : E → F be two positive operators between Banach
lattices such that 0 ≤ S ≤ T holds. If for some x ∈ E+ the set T [0, x] is
weakly relatively compact, then S[0, x] is likewise a weakly relatively compact
subset of F .

Proof. Let {xn} be a disjoint sequence of [0, x]. By Theorem 5.52 we have
lim ‖Txn‖ = 0 and so, from ‖Sxn‖ ≤ ‖Txn‖, it follows that lim ‖Sxn‖ = 0.
By Theorem 5.52, the set S[0, x] is weakly relatively compact.

In terms of disjoint sequences, the weakly compact order intervals are
characterized as follows.

L- and M-weakly Compact Operators
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Corollary 5.54. For a positive vector x in a Banach lattice E the order
interval [0, x] is weakly compact if and only if every disjoint sequence of
[0, x] is norm convergent to zero.

Proof. Note first that [0, x] is a weakly closed set, and then apply Theo-
rem 5.52 to the identity operator I : E → E.

The next result (due to P. Meyer-Nieberg [140]) presents a useful suffi-
cient condition for a set to have a weakly relatively compact solid hull.

Theorem 5.55 (Meyer-Nieberg). Let A be a norm bounded subset of a
Banach lattice. If every disjoint sequence in the solid hull Sol (A) of A is
norm convergent to zero, then Sol (A) is weakly relatively compact.

Proof. Let A be a norm bounded subset of a Banach lattice E such that
every disjoint sequence in the solid hull of A is norm convergent to zero, and
let ε > 0.

Applying Theorem 4.36 to the identity operator I : E → E, ρ(x) = ‖x‖,
and the solid hull of A, we see that there exists some u ∈ E+ lying in the
ideal generated by A such that ‖(|x| −u)+‖ < ε holds for all x ∈ A. From
the identity |x| = |x| ∧ u + (|x| −u)+ and Theorem 1.13, we see that

Sol (A) ⊆ [−u, u] + εU . (�)

Now pick α > 0 and vectors u1, . . . , un ∈ A with 0 ≤ u ≤ α
∑n

i=1 |ui|,
and note that by the Riesz decomposition property (Theorem 1.13) we have

[0, u] ⊆ α
[
0, |u1|

]
+ · · · + α

[
0, |un|

]
. (��)

Since (by our hypothesis) every disjoint sequence in any [0, |ui|] is norm
convergent to zero, it follows from Corollary 5.54 that each order interval
[0, |ui|] is weakly compact. Thus, α

[
0, |u1|

]
+ · · ·+ α

[
0, |un|

]
is weakly com-

pact, and so from (��) we see that [0, u] is weakly compact. This implies
that [−u, u] = −u + 2[0, u] is weakly compact, and so (�) combined with
Theorem 3.44 shows that Sol (A) is a weakly relatively compact set.

The converse of the preceding theorem is true for AL-spaces.

Theorem 5.56. A norm bounded subset A of an AL-space is weakly rela-
tively compact if and only if every disjoint sequence in the solid hull of A is
norm convergent to zero.

Proof. The “if” part is just Theorem 5.55. For the “only if” part assume
that {xn} is a disjoint sequence in the solid hull of a weakly relatively com-
pact subset of an AL-space E. Then, by Theorem 4.34, we have |xn|−→w 0.
On the other hand, since E′ is an AM -space with unit e′, it follows that

‖xn‖ = e′(|xn|) → 0 ,
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and the proof is finished.

Following P. G. Dodds [53], we shall say that a continuous operator
T : E → X from a Banach lattice to a Banach space is order weakly com-
pact (abbreviated as o-weakly compact) whenever T [0, x] is a relatively
weakly compact subset of X for each x ∈ E+.

The o-weakly compact operators have been characterized in [53] as fol-
lows.

Theorem 5.57 (Dodds). For a continuous operator T : E → X from a
Banach lattice to a Banach space the following statements are equivalent:

(1) The operator T is o-weakly compact.
(2) If {xn} is any order bounded disjoint sequence of E, then we have

lim ‖Txn‖ = 0.
(3) For each x ∈ E+ and each ε > 0 there exist 0 ≤ x′ ∈ E′ and δ > 0

such that |y| ≤ x and x′(|y|) < δ imply ‖Ty‖ < ε.
(4) If A denotes the ideal generated by E in E′′, then T ′′(A) ⊆ X holds.

Proof. (1) =⇒ (2) This follows immediately from Theorem 5.52.

(2) =⇒ (3) Fix ε > 0 and x ∈ E+. Consider T ′ : X ′ → E′, and let U ′

denote the closed unit ball of X ′. By (2), we see that every disjoint sequence
of [0, x] converges uniformly to zero on T ′(U ′). Then, by Theorem 4.40, there
exists some 0 ≤ x′ ∈ E′ such that (|T ′f | −x′)+(x) < ε

3 holds for all f ∈ U ′.
Now put δ = ε

3 , and let |y| ≤ x satisfy x′(|y|) < δ. Then for each f ∈ U ′ we
have ∣∣f(Ty)

∣∣ ≤
∣∣T ′f
∣∣(|y|) = (|T ′f | −x′)+(|y|) + [x′ ∧ |T ′f |](|y|)

≤ (|T ′f | −x′)+(x) + x′(|y|) < ε
3 + ε

3 = 2
3ε .

The latter implies that ‖Ty‖ < ε holds, as desired.

(3) =⇒ (4) Let 0 ≤ x′′ ∈ A. Then, there exists some x ∈ E+ with
0 ≤ x′′ ≤ x. Since A ⊆ (E′)∼n holds, it follows from Theorem 3.60 that
E is |σ|(E′′, E′)-dense in A. Thus, there exists a net {xα} ⊆ [0, x] with
|xα −x′′|−→w∗

0. Taking into account that T ′′ : E′′ → X ′′ is w∗-continuous,
we see that Txα−→w

∗
T ′′x′′ also holds.

Now let ε > 0. Choose δ > 0 and 0 ≤ x′ ∈ E′ such that |y| ≤ x and
x′(|y|) < 2δ imply ‖Ty‖ < ε. Next, pick some α0 so that

〈
x′, |x′′−xα|

〉
< δ

holds for all α � α0. Clearly, |xα −xβ | ≤ x and x′(|xα −xβ |) < 2δ holds for
all α, β � α0. Fix some β � α0, and note that if g ∈ X ′ satisfies ‖g‖ ≤ 1,
then∣∣g(T ′′x′′−Txβ)

∣∣ = lim
α�α0

∣∣g(T (xα −xβ))
∣∣ ≤ lim sup

α

∥∥T (xα −xβ)
∥∥ ≤ ε
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holds, from which it follows that ‖T ′′x′′−Txβ‖ ≤ ε. This shows that T ′′x′′

lies in the norm closure of X in X ′′. Since X is a Banach space, we see that
T ′′x′′ ∈ X. Therefore, T ′′(A) ⊆ X holds.

(4) =⇒ (1) Let x ∈ E+. Put [[0, x]] = {x′′ ∈ E′′ : 0 ≤ x′′ ≤ x}, and
note that [[0, x]] is a w∗-compact subset of E′′. Since T ′′ : E′′ → X ′′ is w∗-
continuous, it follows that T ′′[[0, x]] is a w∗-compact subset of X ′′. On the
other hand, the weak∗ topology on X ′′ induces the weak topology on X, and
so, from T ′′[[0, x]] ⊆ X, we see that T ′′[[0, x]] is a weakly compact subset of
X. Finally, the inclusion T [0, x] ⊆ T ′′[[0, x]] implies that T [0, x] is a weakly
relatively compact subset of X.

Clearly, every weakly compact operator from a Banach lattice to a Ba-
nach space is o-weakly compact. Also, every continuous operator from a
Banach lattice with order continuous norm into a Banach space must be
o-weakly compact. This is true because if a Banach lattice has order contin-
uous norm, then its order intervals are weakly compact (see Theorem 4.9).
Therefore, the identity operator I : L1[0, 1] → L1[0, 1] is an example of an
o-weakly compact operator which is not weakly compact.

On the other hand, consider a continuous operator T : E → X from
a Banach lattice to a Banach space that admits a factorization through a
Banach lattice F

E X

F

T

R S

with the factor R positive. If F has order continuous norm, then it should
be clear that T is o-weakly compact. Remarkably, the converse of the latter
is also true. This is due to the authors [17].

Theorem 5.58 (Aliprantis–Burkinshaw). If T : E → X is an o-weakly
compact operator, then T admits a factorization through a Banach lattice F
with order continuous norm

E X

F

T

Q S

such that:

(1) Q is a lattice homomorphism.
(2) S is positive if T is also positive.
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Proof. The first part of the proof is precisely the first part of the proof of
Theorem 4.63. Define a lattice seminorm ρ on E for each x ∈ E by

ρ(x) = sup{‖Ty‖ : |y| ≤ |x|} .

Let N = {x ∈ E : ρ(x) = 0} be the null ideal of ρ, and let Q : E → E/N
denote the canonical projection, i.e., Q(x) = ẋ. Then, E/N under the
quotient norm

‖ẋ‖ = ρ(x) ,

is a normed Riesz space, and so its norm completion F of (E/N, ‖ · ‖) is a
Banach lattice. Note that

‖Tx‖ ≤ ‖ẋ‖
holds for all x ∈ E. In particular, this implies that the formula S(ẋ) = Tx
gives rise to a well defined continuous operator from E/N to X. Denote by
S again the unique continuous linear extension of S to all of F . Thus, we
have the factorization:

E X

F

T

Q S

Clearly, Q is a lattice homomorphism, and S is positive if T is also positive.
It remains to be shown that F has order continuous norm. By Theo-

rem 4.11, it suffices to show that if 0 ≤ ẋn ↑≤ ẋ holds in E/N , then {ẋn}
is a Cauchy sequence. So, let 0 ≤ ẋn ↑≤ ẋ hold in E/N . Since Q is a
lattice homomorphism, replacing x by x+ and each xn by

(∨n
i=1x

+
i

)
∧ x+,

we can suppose that 0 ≤ xn ↑≤ x also holds in E. Assume by way of con-
tradiction that {ẋn} is not a Cauchy sequence of E/N . Then, by passing
to a subsequence, we can suppose that there exists some ε > 0 satisfying
‖ẋn+1 − ẋn‖ > ε for all n. Thus, for each n there exists some yn ∈ E with
|yn| ≤ xn+1 −xn and

‖Tyn‖ > ε . (�)

From 0 ≤
∑n

i=1 |yi| ≤
∑n

i=1(xi+1 −xi) ≤ x, it easily follows that |yn|−→w 0.
Next, by Theorem 5.57 (Condition 3) there exist 0 ≤ x′ ∈ E′ and δ > 0
such that |y| ≤ x and x′(|y|) < δ imply ‖Ty‖ < ε. Since lim x′(|yn|) = 0
and |yn| ≤ x, we see that ‖Tyn‖ < ε must hold for all sufficiently large n.
However, the latter contradicts (�), and the proof is finished.

We now turn our attention to two special classes of weakly compact
operators. They are the classes of L- and M -weakly compact operators
and were introduced by P. Meyer-Nieberg in [142]. As we shall see, these
operators are in a duality with each other.
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Definition 5.59 (Meyer-Nieberg). A continuous operator T : E → X from
a Banach lattice to a Banach space is said to be M-weakly compact if
lim ‖Txn‖ = 0 holds for every norm bounded disjoint sequence {xn} of E.

Similarly, a continuous operator T : X → E from a Banach space to
a Banach lattice is said to be L-weakly compact whenever lim ‖yn‖ = 0
holds for every disjoint sequence {yn} in the solid hull of T (U), where U is
the closed unit ball of the Banach space X.

In the sequel, we shall see that the L- and M -weakly compact operators
enjoy many interesting features whose proofs require a deep understanding
of the properties of disjoint sequences. We begin with the following lattice
approximation properties.

Theorem 5.60 (Meyer-Nieberg). For a Banach lattice E and a Banach
space X the following statements hold:

(1) If T : E → X is an M -weakly compact operator, then for each ε > 0
there exists some u ∈ E+ such that∥∥T ((|x| −u)+)

∥∥ < ε

holds for all x ∈ E with ‖x‖ ≤ 1.
(2) If T : X → E is an L-weakly compact operator, then for each ε > 0

there exists some u ∈ E+ lying in the ideal generated by T (X)
satisfying ∥∥(|Tx| −u)+

∥∥ < ε

for all x ∈ X with ‖x‖ ≤ 1.

Proof. (1) Let A be the closed unit ball of E, and let ρ(x) = ‖x‖. Then,
lim ρ(Txn) = 0 holds for each disjoint sequence {xn} in A. So, by The-
orem 4.36, there exists some u ∈ E+ satisfying ‖T (|x| −u)+‖ < ε for all
x ∈ A.

(2) Let U denote the closed unit ball of X, and let A be the solid hull
of T (U). Since T is L-weakly compact, every disjoint sequence in A is norm
convergent to zero.

Now if I : E → E is the identity operator and ρ(x) = ‖x‖, then it
follows from Theorem 4.36 that there exists some u ∈ E+ lying in the ideal
generated by A such that ‖I(|y| −u)+‖ < ε holds for all y ∈ A. In particular,
we have ‖(|Tx| −u)+‖ < ε for all x ∈ U .

P. Meyer-Nieberg [142] has shown that L-weakly compact and M -weakly
compact operators are indeed weakly compact operators.

Theorem 5.61 (Meyer-Nieberg). L- and M -weakly compact operators are
weakly compact.
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Proof. Assume first that T : E → X is an M -weakly compact operator.
Denote by U and V the closed unit balls of E and X, respectively, and let
ε > 0. By part (1) of Theorem 5.60 there exists some u ∈ E+ such that
‖T (|x| −u)+‖ < ε holds for all x ∈ U , and consequently from the lattice
identity |x| = |x| ∧ u + (|x| −u)+ we see that

T (U+) ⊆ T [0, u] + εV . (�)

On the other hand, if {un} is a disjoint sequence of [0, u], then it follows
from our hypothesis that lim ‖Tun‖ = 0, and thus by Theorem 5.52 the set
T [0, u] is weakly relatively compact. Now (�) combined with Theorem 3.44
shows that T (U+) (and hence T (U)) is weakly relatively compact, and so T
is a weakly compact operator.

Next, assume that T : X → E is an L-weakly compact operator. If U
is the closed unit ball of X, then every disjoint sequence in the solid hull
of T (U) is norm convergent to zero. By Theorem 5.55 the solid hull of
T (U) (and hence T (U) itself) is weakly relatively compact. Therefore, T is
a weakly compact operator.

A compact (and hence a weakly compact) operator between Banach
lattices need not be L- or M -weakly compact. For instance, consider the
operator T : �1 → �∞ defined by

T (α1, α2, . . .) =
( ∞∑

n=1

αn,
∞∑

n=1

αn, . . .
)

=
[ ∞∑

n=1

αn

]
(1, 1, 1, . . .) .

Clearly, T is a compact operator (it has rank one). The sequence {en} of the
standard unit vectors is a norm bounded disjoint sequence of �1 satisfying
Ten = (1, 1, 1, . . .) for each n. This shows that T is not M -weakly compact.
On the other hand, if U is the closed unit ball of �1, then it is easy to see that
{en} is also a disjoint sequence in the solid hull of T (U). From ‖en‖∞ �→ 0,
we see that T fails to be L-weakly compact.

Theorem 5.62. A continuous operator T : E → X from an AM -space to a
Banach space is weakly compact if and only if it is M -weakly compact.

Similarly, a continuous operator T : X → E from a Banach space to an
AL-space is weakly compact if and only if it is L-weakly compact.

Proof. By Theorem 5.61 we know that L- and M -weakly compact operators
are weakly compact. Assume first that T : E → X is a weakly compact
operator from an AM -space to a Banach space, and let {xn} be a norm
bounded disjoint sequence of E. Then T ′′ : E′′ → X ′′ is weakly compact, E′′

is an AM -space with unit, and {xn} is an order bounded disjoint sequence
of E′′. Since T ′′ is o-weakly compact, it follows from Theorem 5.52 that
‖Txn‖ = ‖T ′′xn‖ → 0, and so T is M -weakly compact.
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Next, suppose that T : X → E is a weakly compact operators from
a Banach space to an AL-space, and let U denote the closed unit ball of
X. Then T (U) is weakly relatively compact, and since E is an AL-space,
it follows that every disjoint sequence in the solid hull of T (U) is norm
convergent to zero (see Theorem 5.56). So, T is L-weakly compact.

We continue with a duality theorem involving disjoint sequences that is
due to O. Burkinshaw and P. G. Dodds [49].

Theorem 5.63 (Burkinshaw–Dodds). If E is an arbitrary Banach lattice
and A ⊆ E and B ⊆ E′ are two nonempty norm bounded sets, then the
following statements are equivalent:

(1) Each disjoint sequence in the solid hull of A converges uniformly
to zero on B.

(2) Each disjoint sequence in the solid hull of B converges uniformly
to zero on A.

Proof. For simplicity write

ρB(x) = sup
{
|x′(x)| : x′ ∈ B

}
and ρA(x′) = sup

{
|x′(x)| : x ∈ A

}
.

(1) =⇒ (2) Let {x′
n} be a disjoint sequence in the solid hull of B. Then,

we have to show that lim ρA(x′
n) = 0.

First, we claim that lim |x′
m|(u) = 0 holds for every u in the ideal

generated by A. To see this, let u ∈ E+ be in the ideal generated by A, and
let ε > 0. Since (by our hypothesis) every disjoint sequence in [0, u] converges
uniformly to zero on B, there exists by Theorem 4.40 some 0 ≤ y′ ∈ E′ such
that for each x′ ∈ B we have(

|x′| − y′
)+(u) < ε .

Note that since {|x′
n| ∧ y′} is an order bounded disjoint sequence, we have

lim(|x′
n| ∧ y′)(u) = 0. On the other hand, from

|x′
n|(u) = (|x′

n| − y′)+(u) + (|x′
n| ∧ |y′|)(u) < ε + (|x′

n| ∧ y′)(u) ,

we see that lim sup |x′
n|(u) ≤ ε. Since ε > 0 is arbitrary, the latter implies

that lim |x′
n|(u) = 0, as claimed.

Next, consider the lattice seminorm ρ on E defined by

ρ(x) = sup
{
|x′|(|x|) : x′ ∈ B

}
.

Then, we claim that lim ρ(xn) = 0 holds for each disjoint sequence in the
solid hull of A. To see this, let {xn} be a disjoint sequence in the solid hull
of A. For each n choose some x′

n ∈ B with

ρ(xn) ≤ 2|x′
n|(|xn|) = 2 sup

{
|x′

n(y)| : |y| ≤ |xn|
}

.
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It follows that for each n there exists some |yn| ≤ |xn| with

|x′
n|(|xn|) ≤ 2|x′

n(yn)| ≤ 2ρB(yn) ,

and so ρ(xn) ≤ 4ρB(yn) holds for each n. Since {yn} is a disjoint sequence
in the solid hull of A, it follows from our hypothesis that lim ρB(yn) = 0,
and hence lim ρ(xn) = 0 holds, as desired.

Now let ε > 0. Theorem 4.36 applied to the identity operator I : E → E,
Sol (A) and ρ, shows that there exists some u in the ideal generated by A
satisfying ρ

(
(|x| −u)+

)
< ε for all x ∈ A. In particular, for each x ∈ A we

have ∣∣x′
n(x)
∣∣ ≤ |x′

n|(|x|) ≤ |x′
n|(|x| −u)+ + |x′

n|(u)

≤ ρ
(
(|x| −u)+

)
+ |x′

n|(u) < ε + |x′
n|(u) ,

and so ρA(x′
n) ≤ ε+|x′

n|(u) holds. Taking into account that lim |x′
n|(u) = 0,

we see that lim sup ρA(x′
n) ≤ ε. Since ε > 0 is arbitrary, the latter implies

that lim ρA(x′
n) = 0, as required.

(2) =⇒ (1) Let {xn} be a disjoint sequence in the solid hull of A. We
have to show that lim ρB(xn) = 0 holds.

Pick a sequence {yn} ⊆ A with |xn| ≤ |yn| for all n. Also, for each n
choose some y′n ∈ B with

ρB(xn) ≤ 2|y′n(xn)| .

Since {xn} is a disjoint sequence of E, there exists a disjoint sequence {z′n}
of E′ satisfying |z′n| ≤ |y′n| and z′n(xn) = y′n(xn) for each n (see Exercise 22
of Section 1.5). From statement 3 of Theorem 1.23 there exists a sequence
{x′

n} of E′ such that |x′
n| ≤ |z′n| and x′

n(yn) = |z′n|(|yn|) holds for all n.
Clearly, {x′

n} is a disjoint sequence lying in the solid hull of B, and so by
our hypothesis we have lim ρA(x′

n) = 0. Now from

ρB(xn) ≤ 2|y′n(xn)| = 2|z′n(xn)| ≤ 2|z′n|(|xn|)
≤ 2|z′n|(|yn|) = 2x′

n(yn) ≤ 2ρA(x′
n) ,

it easily follows that lim ρB(xn) = 0, and the proof is finished.

We are now in the position to prove that the notions of L- and M -
weakly compact operators are in duality to each other. This result is due to
P. Meyer-Nieberg [142].

Theorem 5.64 (Meyer-Nieberg). For a Banach lattice E and a Banach
space X the following statements hold:

(1) An operator T : E → X is M -weakly compact if and only if its
adjoint T ′ : X ′ → E′ is L-weakly compact.
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(2) An operator T : X → E is L-weakly compact if and only if its
adjoint T ′ : E′ → X ′ is M -weakly compact.

Proof. (1) Consider a continuous operator T : E → X, and denote by U ′

the closed unit ball of X ′. Now let A be the closed unit ball of E (i.e.,
A = {x ∈ E : ‖x‖ ≤ 1}), and let B = T ′(U ′). Then, T is M -weakly
compact if and only if lim ‖Txn‖ = 0 holds for each disjoint sequence {xn}
of A. Thus, T is M -weakly compact if and only if every disjoint sequence of
A converges uniformly to zero on B. By Theorem 5.63, this is equivalent to
saying that every disjoint sequence in the solid hull of B = T ′(U ′) converges
uniformly to zero on A (i.e., is norm convergent to zero). In other words, T
is M -weakly compact if and only if T ′ : X ′ → E′ is L-weakly compact.

(2) Let U be the closed unit ball of X, and let T : X → E be a continuous
operator. Put A = T (U), and B = {x′ ∈ E′ : ‖x′‖ ≤ 1}. Thus, T is L-
weakly compact if and only if every disjoint sequence in the solid hull of A
converges uniformly to zero on B. The latter is (by Theorem 5.63) equivalent
to saying that every disjoint sequence {x′

n} of B converges uniformly to zero
(i.e., lim ‖T ′x′

n‖ = 0 holds). In other words, T is L-weakly compact if and
only if T ′ is M -weakly compact.

The norm limit of a sequence of L-weakly compact (resp. M -weakly
compact) operators is again L-weakly compact (resp. M -weakly compact).
The details are included in the next result.

Theorem 5.65. For a Banach lattice E and a Banach space X the following
statements hold:

(1) The set of all M -weakly compact operators from E to X is a closed
vector subspace of L(E, X).

(2) The set of all L-weakly compact operators from X to E is a closed
vector subspace of L(X, E).

Proof. (1) Clearly, the set of all M -weakly compact operators from E to
X is a vector subspace of L(E, X). To see that it is also a closed vector
subspace of L(E, X), let T be in the closure of the set of all M -weakly
compact operators of L(E, X).

Assume that {xn} is a disjoint sequence of E satisfying ‖xn‖ ≤ 1 for all
n. We have to show that lim ‖Txn‖ = 0. To this end, let ε > 0. Pick an
M -weakly compact operator S : E → X with ‖T −S‖ < ε, and note that it
follows from the inequalities

‖Txn‖ ≤ ‖(T −S)xn‖ + ‖Sxn‖ < ε + ‖Sxn‖
that lim sup ‖Txn‖ ≤ ε. Since ε > 0 is arbitrary, we see that lim ‖Txn‖ = 0
holds, as desired.
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(2) To see that the sum of two L-weakly compact operators is L-weakly
compact, let S, T ∈ L(X, E) be two L-weakly compact operators. Then
part (1) and (S + T )′ = S′ +T ′ coupled with Theorem 5.64 show that S + T
is L-weakly compact. Thus, the set of all L-weakly compact operators is a
vector subspace of L(X, E).

Finally, to see that the vector subspace of all L-weakly compact op-
erators of L(X, E) is norm closed, let {Tn} ⊆ L(X, E) be a sequence of
L-weakly compact operators satisfying lim ‖Tn −T‖ = 0 in L(X, E). Then,
lim ‖T ′

n −T ′‖ = 0 holds in L(E′, X ′). Since (by Theorem 5.64) each T ′
n

is M -weakly compact, it follows from part (1) that T ′ is also M -weakly
compact. By Theorem 5.64 again, we see that T is L-weakly compact.

It is useful to know that the range of an L-weakly compact operator is
included in a Banach lattice with order continuous norm.

Theorem 5.66. Let T : X → E be an L-weakly compact operator. If A is
the ideal generated by T (X), then A (the norm closure of A) is a Banach
lattice with order continuous norm.

Proof. By Theorems 4.13 and 4.11, it suffices to show that every order
bounded disjoint sequence in A is norm convergent to zero. So, let {xn} be
a disjoint sequence satisfying 0 ≤ xn ≤ x for all n and some x ∈ A.

Pick y1, . . . , yk ∈ X with x ≤
∑k

i=1|Tyi|, and then use Theorem 1.13
to write xn = x1

n + · · · + xk
n with 0 ≤ xi

n ≤ |Tyi| for each n and each
i = 1, . . . , k. Clearly, for each i the sequence {xi

n} is disjoint, and so from
the L-weak compactness of T it follows that lim ‖xi

n‖ = 0 holds for each i.
Thus, lim ‖xn‖ = 0, and the proof is finished.

The concepts of L- and M -weakly compact operators may coincide. The
next result of P. G. Dodds and D. H. Fremlin [54] presents some conditions
for this to happen.

Theorem 5.67 (Dodds–Fremlin). Let E and F be a pair of Banach lat-
tices such that E′ and F have order continuous norms. Then, for an order
bounded operator T : E → F the following statements are equivalent:

(1) T is L-weakly compact.

(2) T is M -weakly compact.

(3) T ′ is L-weakly compact.

(4) T ′ is M -weakly compact.

(5) For each pair {xn} and {x′
n} of norm bounded disjoint sequences

of E+ and F ′
+, respectively, we have lim x′

n(Txn) = 0.
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Proof. By Theorem 5.64 we know that (1) ⇐⇒ (4) and (2) ⇐⇒ (3).

(4) =⇒ (5) Let {xn} ⊆ E+ and {x′
n} ⊆ F ′

+ be a pair of norm bounded
disjoint sequences. If ‖xn‖ ≤ M holds for all n, then from

∣∣x′
n(Txn)

∣∣ = ∣∣T ′x′
n(xn)

∣∣ ≤ ∥∥T ′x′
n

∥∥·‖xn‖ ≤ M
∥∥T ′x′

n

∥∥→ 0

we see that lim x′
n(Txn) = 0.

(5) =⇒ (2) Let {xn} be a norm bounded disjoint sequence of E+. We
have to show that lim ‖Txn‖ = 0. To this end, assume by way of contradic-
tion that lim ‖Txn‖ �= 0. Then, there exists some ε > 0 and a subsequence
{yn} of {xn} satisfying ‖Tyn‖ > 2ε for all n.

Since E′ has order continuous norm, it follows that yn−→w 0 (see Ex-
ercise 7 of Section 4.3), and so |T |yn−→w 0. The inequality |Tyn| ≤ |T |yn

implies |Tyn|−→w 0. Now an easy inductive argument shows that there exist
a subsequence {zn} of {yn} and a sequence {x′

n} ⊆ F ′
+ with ‖x′

n‖ = 1 for
each n such that

x′
n

(
|Tzn|

)
> 2ε and

(
4n

n∑
i=1

x′
i

)(
|Tzn+1|

)
< 1

n .

Put φ =
∑∞

n=12
−nx′

n and φn =
(
x′

n+1 − 4n
∑n

i=1x
′
i − 2−nφ

)+. By
Lemma 4.35 the sequence {φn} is disjoint. From

φn

(
|Tzn+1|

)
≥
(
x′

n+1 − 4n
n∑

i=1

x′
i − 2−nφ

)(
|Tzn+1|

)

> 2ε − 1
n − 2−nφ

(
|Tzn+1|

)
,

we see that

φn

(
|Tzn+1|

)
> ε (�)

must hold for all n sufficiently large. For each n pick |ψn| ≤ φn with
φn(|Tzn+1|) = ψn(Tzn+1) (see Theorem 1.23), and note that {ψn} is a
disjoint sequence. On the other hand, from our hypothesis it follows that

φn(|Tzn+1|) = ψn(Tzn+1) −→ 0 ,

which contradicts (�). Therefore, lim ‖Txn‖ = 0 must hold true.

(2) =⇒ (1) Let U and V be the closed unit balls of E and F , respectively,
and consider a disjoint sequence {yn} ⊆ E+ lying in the solid hull of T (U).
We need to show that lim ‖yn‖ = 0.

To this end, let ε > 0. For each n choose some vector xn ∈ U with
0 ≤ yn ≤ |Txn|. Now by Theorem 5.60 there exists some u ∈ E+ satisfying



328 5. Compactness Properties of Positive Operators

‖T (|x| −u)+‖ < ε for all x ∈ U . From

0 ≤ yn ≤ |Txn| ≤ |Tx+
n | + |Tx−

n |
≤ |T (x+

n −u)+| + |T |u + |T (x−
n −u)+| + |T |u ∈ 2εV + 2

[
0, |T |u

]
,

it follows that for each n there exists 0 ≤ un ∈ 2εV and vn ∈ 2
[
0, |T |u

]
with yn = un + vn. Since F has order continuous norm and {vn} is an order
bounded disjoint sequence, we have lim ‖vn‖ = 0. The inequality

‖yn‖ ≤ ‖un‖ + ‖vn‖ ≤ 2ε + ‖vn‖ ,

implies lim sup ‖yn‖ ≤ 2ε. Since ε > 0 is arbitrary, the latter yields
lim ‖yn‖ = 0, and the proof is finished.

We continue now with the introduction of operators having order con-
tinuous norms. Consider two Banach lattices E and F with F Dedekind
complete, and let T : E → F be an order bounded operator. Then T is
said to have order continuous norm whenever every sequence of posi-
tive operators with |T | ≥ Tn ↓ 0 in Lb(E, F ) satisfies ‖Tn‖ ↓ 0. A glance
at Theorems 4.9, 4.11, and 4.13 shows that the following statements are
equivalent:

(1) T has order continuous norm.

(2) |T | ≥ Tα ↓ 0 in Lb(E, F ) implies ‖Tα‖ ↓ 0.

(3) 0 ≤ Tα ↑≤ |T | in Lb(E, F ) implies that {Tα} is an r-norm Cauchy
net.

(4) 0 ≤ Tn ↑≤ |T | in Lb(E, F ) implies that {Tn} is an r-norm Cauchy
sequence.

(5) Every disjoint sequence of
[
0, |T |

]
is norm convergent to zero.

(6) If AT is the ideal generated by T in Lb(E, F ) equipped with the
r-norm, then the norm completion of AT is a Banach lattice with
order continuous norm.

The positive operators that have order continuous norms are precisely
the positive operators which are simultaneously L- and M -weakly compact.
This is due to P. G. Dodds and D. H. Fremlin [54].

Theorem 5.68 (Dodds–Fremlin). A positive operator T : E → F between
Banach lattices with F Dedekind complete has order continuous norm if and
only if T is both L- and M -weakly compact.

Proof. Assume first that T has order continuous norm. We shall show next
that T is M -weakly compact.
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Let {xn} be a disjoint sequence of E+ satisfying ‖xn‖ ≤ 1 for all n. For
each n, the formula

Tn(x) = sup
{
T (x ∧ kxn) : k = 1, 2, . . .

}
, x ∈ E+ , (��)

defines a positive operator Tn : E → F satisfying the properties: 0 ≤ Tn ≤ T ,
Tn(xn) = T (xn), and Tn(y) = 0 for y ⊥ xn (see Theorem 1.22). Moreover, it
follows from (��) that Tn(x) = T (x) whenever 0 ≤ x ≤ kxn holds for some
k. On the other hand, we claim that Tn ⊥ Tm for n �= m. To see this, let
n �= m, and let x ∈ E+. From x ∧ kxn ⊥ xm, we see that Tm(x ∧ kxn) = 0
and so from

0 ≤ [Tn ∧ Tm](x) ≤ Tn(x−x ∧ kxn) + Tm(x ∧ kxn)

= Tn(x−x ∧ kxn) = Tn(x) − T (x ∧ kxn) ↓k 0

it follows that [Tn ∧ Tm](x) = 0. Therefore, Tn ∧ Tm = 0 holds. Since T has
order continuous norm, we infer that lim ‖Tn‖ = 0, and so from

‖T (xn)‖ = ‖Tn(xn)‖ ≤ ‖Tn‖
it follows that lim ‖T (xn)‖ = 0. That is, T is M -weakly compact.

Now, to show that T is L-weakly compact, let {yn} ⊆ F+ be a disjoint
sequence in the solid hull of the image under T of the closed unit ball of
E. Pick a sequence {xn} ⊆ E+ with ‖xn‖ ≤ 1 and 0 ≤ yn ≤ Txn for all
n. Denote by Pn the order projection of F onto the band generated by yn,
and note that Pn ⊥ Pm implies Pn(x) ⊥ Pm(x) for all x ∈ F (n �= m).
Next, define the operators Tn : E → F by Tn(x) = PnT (x), and note that
0 ≤ Tn ≤ T holds for each n. On the other hand, for n �= m and x ∈ E+ we
have

0 ≤ [Tn ∧ Tm](x) ≤ Pn(Tx) ∧ Pm(Tx) = 0 ,

and so {Tn} is a disjoint sequence. Since T has order continuous norm, the
latter implies lim ‖Tn‖ = 0, and from

‖yn‖ =
∥∥Pn(yn)

∥∥ ≤ ∥∥PnT (xn)
∥∥ =
∥∥Tn(xn)

∥∥ ≤ ‖Tn‖
we see that lim ‖yn‖ = 0. Therefore, T is also L-weakly compact.

For the converse, suppose that T is both L- and M -weakly compact. Let
{Tn} ⊆ Lb(E, F ) satisfy T ≥ Tn ↓ 0. We need to show that lim ‖Tn‖ = 0.
To this end, let ε > 0. By Theorem 5.60 there exists some u ∈ E+ satisfying
‖T (|x| −u)+‖ < ε for all x ∈ E with ‖x‖ ≤ 1. From

|Tn(x)| ≤ Tn(|x|) ≤ Tn(|x| −u)+ + Tn(u) ≤ T (|x| −u)+ + Tn(u)

we see that

‖Tn(x)‖ ≤ ‖T (|x| −u)+‖ + ‖Tn(u)‖ < ε + ‖Tn(u)‖
holds for all x ∈ E with ‖x‖ ≤ 1. Therefore,

‖Tn‖ ≤ ε + ‖Tn(u)‖
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holds for all n. On the other hand, Tn(u) ↓ 0 holds in the ideal generated
by T (E), and by Theorem 5.66 the ideal generated by T (E) has order con-
tinuous norm. Thus, ‖Tn(u)‖ ↓ 0, and so we see that lim sup ‖Tn‖ ≤ ε.
Since ε > 0 is arbitrary, the latter shows that lim ‖Tn‖ = 0, and the proof
is finished.

Now consider a continuous operator T : X → Y between two Banach
spaces, and let Ring(T ) be the norm closure in L(X, Y ) of the vector sub-
space consisting of all operators of the form

∑n
i=1RiTSi, where S1, . . . , Sn

belong to L(X) and R1, . . . , Rn ∈ L(Y ). That is,

Ring(T ) :=
{
S : S =

n∑
i=1

RiTSi with Si ∈ L(X) and Ri ∈ L(Y )
}

.

Definition 5.69. The closed vector subspace Ring(T ) of L(X, Y ) is called
the ring ideal generated by the operator T .

Next, let E and F be two Banach lattices with F Dedekind complete.
Then, we know that Lb(E, F ) ⊆ L(E, F ) holds. If T : E → F is an order
bounded operator, then we can consider the (order) ideal AT generated by
T in Lb(E, F ), i.e.,

AT =
{
S ∈ Lb(E, F ) : ∃ n with |S| ≤ n|T |

}
,

and ask the following question: Is there any relationship between the order
and ring ideals generated by an operator?

H. Leinfelder proved in [111] that for a positive compact operator T
between Lp-spaces we have AT ⊆ Ring(T ). This was generalized by B. de
Pagter in [159] for an operator with order continuous norm between certain
Banach lattices. These results are special cases of the following theorem.

Theorem 5.70. Let E be a Banach lattice which is either Dedekind σ-
complete or has a quasi-interior point, and let F be a Dedekind complete
Banach lattice. If a positive operator T : E → F has order continuous norm,
then AT ⊆ Ring(T ).

Proof. By Theorem 5.68, T is both L- and M -weakly compact. Let A be
the ideal generated by T (E). Then, by Theorem 5.66, A is a Banach lattice
with order continuous norm. Now consider an operator S : E → F satisfying
0 ≤ S ≤ T . Clearly, S(E) ⊆ A holds.

Let ε > 0. Since T is M -weakly compact, there exists some u ∈ E+

satisfying ‖T (|x| −u)+‖ < ε for all x ∈ E with ‖x‖ ≤ 1. Also, since A
has order continuous norm, there exist by Theorem 4.87 positive operators
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M1, . . . , Mk on E and order projections P1, . . . , Pk on A such that

0 ≤
k∑

i=1

PiTMi ≤ T and
∥∥∥
∣∣∣S −

k∑
i=1

PiTMi

∣∣∣u
∥∥∥ < ε .

Next, note that each Pi : A → F is bounded by the identity operator
I : F → F , and so by Theorem 1.26 each Pi extends to a positive operator
(which we shall denote by Pi again) to all of F satisfying 0 ≤ Pi ≤ I. Clearly,∑k

i=1 PiTMi ∈ Ring(T ) and

∣∣∣S −
k∑

i=1

PiTMi

∣∣∣ ≤ S +
k∑

i=1

PiTMi ≤ 2T

holds in Lb(E, F ). On the other hand, for each x ∈ E we have

∣∣∣
[
S −

k∑
i=1

PiTMi

]
x
∣∣∣ ≤

∣∣∣S −
k∑

i=1

PiTMi

∣∣∣(|x| −u
)+ +
∣∣∣S −

k∑
i=1

PiTMi

∣∣∣u

≤ 2T
(
|x| −u

)+ +
∣∣∣S −

k∑
i=1

PiTMi

∣∣∣u ,

and so for each x ∈ E with ‖x‖ ≤ 1 we have

∥∥∥
[
S −

k∑
i=1

PiTMi

]
x
∥∥∥ ≤ 2

∥∥T (|x| −u
)+∥∥+

∥∥∥
∣∣∣S −

k∑
i=1

PiTMi

∣∣∣u
∥∥∥ ≤ 3ε .

This easily implies
∥∥S −

∑k
i=1 PiTMi

∥∥ ≤ 3ε for each ε > 0, from which it
follows that S ∈ Ring(T ).

If two operators S, T : E → E on a Banach lattice satisfy 0 ≤ S ≤ T ,
then under what conditions is some power of S in the ring ideal generated
by T?

Before giving some answers to this question we need to introduce the
class of semicompact operators. Following A. C. Zaanen [197] we say that a
continuous operator T : X → E from a Banach space to a Banach lattice is
semicompact whenever for each ε > 0 there exists some u ∈ E+ satisfying∥∥(|Tx| −u)+

∥∥ < ε

for all x ∈ X with ‖x‖ ≤ 1.
Consider a continuous operator T : X → E from a Banach space to a

Banach lattice, and let U and V denote the closed unit balls of X and E,
respectively. From the identity |Tx| = |Tx| ∧ u + (|Tx| −u)+ and Theo-
rem 1.13, it is easy to see that T is a semicompact operator if and only if
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for each ε > 0 there exists some u ∈ E+ such that

T (U) ⊆ [−u, u] + εV .

The discussion below will establish that many of the operators encoun-
tered previously were in fact semicompact operators.

Theorem 5.71. If an operator T : X → E from a Banach space to a Banach
lattice is either

(a) compact, or

(b) L-weakly compact,

then T is a semicompact operator.

Proof. (a) Denote by U the closed unit ball of X. Assume that T is
compact, and let ε > 0. Pick a finite subset {u1, . . . , un} of E such
that for each x ∈ U we have ‖Tx−ui‖ < ε for at least one i. Put
u = |u1|+ · · · + |un| ∈ E+.

Now let x ∈ U . Choose some ui with ‖Tx−ui‖ < ε, and note that the
inequalities(

|Tx| −u
)+ ≤

(
|Tx| − |ui|

)+ ≤
∣∣|Tx| − |ui|

∣∣ ≤ |Tx−ui|

imply ‖(|Tx| −u)+‖ ≤ ‖Tx−ui‖ < ε. This shows that T is a semicompact
operator.

(b) This is part (2) of Theorem 5.60.

An operator dominated by a semicompact operator is also semicompact.

Theorem 5.72. If a positive operator T : E → F between two Banach lat-
tices is either

(a) M -weakly compact, or

(b) dominated by a semicompact operator,

then T is semicompact.

Proof. (a) Denote by U the closed unit ball of E. Assume that T is M -
weakly compact, and let ε > 0. By Theorem 5.60 there exists some w ∈ E+

satisfying ‖T (|x| −w)+‖ < ε for all x ∈ U . Put u = Tw ∈ F+, and note
that (

|Tx| −u
)+ =

(
|Tx| −Tw

)+ ≤
(
T |x| −Tw

)+
=
(
T (|x| −w)

)+ ≤ T
(
(|x| −w)+

)
.

Thus, ‖(|Tx| −u)+‖ ≤ ‖T (|x| −w)+‖ < ε holds for all x ∈ U .
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(b) Assume that a semicompact operator R : E → F satisfies 0 ≤ T ≤ R.
Given ε > 0 pick some u ∈ F+ with ‖(|Rx| −u)+‖ < ε for all x ∈ U , and
note that ∥∥(|Tx| −u)+

∥∥ ≤ ∥∥(T |x| −u)+
∥∥ ≤ ∥∥(R|x| −u)+

∥∥ < ε

holds for all x ∈ U .

A semicompact operator need not be compact, weakly compact, L-
weakly compact, or M -weakly compact. For instance, the identity operator
I : �∞ → �∞ is semicompact, but it does not have any one of the above
mentioned compactness properties.

We now pass to two basic properties of semicompact operators. The first
one tells us that the range of a semicompact operator is always included in
a Banach lattice with a quasi-interior point.

Theorem 5.73. If T : X → E is a semicompact operator, then there exists
some y ∈ E+ such that the ideal Ey generated by y satisfies T (X) ⊆ Ey.

Proof. For each n choose some 0 < un ∈ E such that ‖(|Tx| −un)+‖ < 1
n

holds for all x ∈ X with ‖x‖ ≤ 1. Put y =
∑∞

n=1 2−nun/‖un‖, and let Ey

be the ideal generated by y in E. Clearly, {un} ⊆ Ey.
Now let x ∈ X satisfy ‖x‖ ≤ 1. From∥∥|Tx| − |Tx| ∧ un

∥∥ =
∥∥(|Tx| −un)+

∥∥ < 1
n

and |Tx| ∧ un ∈ Ey, we see that |Tx| ∈ Ey. Since the norm closure of Ey is
an ideal, it follows that Tx ∈ Ey. Consequently, T (X) ⊆ Ey holds.

A continuous operator with a semicompact adjoint is necessarily an o-
weakly compact operator.

Theorem 5.74. If a continuous operator T : E → F between Banach lat-
tices has a semicompact adjoint, then T is o-weakly compact.

Proof. Let 0 < x ∈ E, and let ε > 0. Pick 0 ≤ φ ∈ E′ such that∥∥(|T ′x′| −φ)+
∥∥ < ε

‖x‖

holds for all x′ ∈ F ′ with ‖x′‖ ≤ 1.
If y ∈ E satisfies |y| ≤ x and φ(|y|) < ε, then for each x′ ∈ F ′ with

‖x′‖ ≤ 1 we have∣∣x′(Ty)
∣∣ ≤ |T ′x′|(|y|) ≤

(
|T ′x′| −φ

)+(|y|) + φ(|y|)
≤
∥∥(|T ′x′| −φ)+

∥∥·‖x‖ + φ(|y|) < ε + ε = 2ε ,

and so ‖Ty‖ ≤ 2ε holds. Hence, T satisfies condition (3) of Theorem 5.57,
and consequently T is o-weakly compact.
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For a semicompact operator there are some subtle relationships between
the ring ideal and the order ideal generated by the operator. The next result
of the authors [17] presents such a relationship.

Theorem 5.75 (Aliprantis–Burkinshaw). Let S, T : E → E be two positive
operators on a Banach lattice such that 0 ≤ S ≤ T holds. If S and its
adjoint S′ are both semicompact, then S3 belongs to Ring(T ).

Proof. Without loss of generality we can assume that ‖T‖ ≤ 1. This implies
‖S‖ ≤ 1. Let ε > 0 be fixed.

Choose 0 ≤ u ∈ E and 0 ≤ φ ∈ E′ such that∥∥(|Sx| −u)+
∥∥ < ε and

∥∥(|S′x′| −φ)+
∥∥ < ε

hold for all x ∈ U and x′ ∈ U ′. By Theorem 5.73 there exists some y ∈ E+

with S(E) ⊆ Ey (where Ey is the norm closure of Ey in E). Replacing y by
y + u we can assume without loss of generality that u ∈ Ey.

Next, restrict S and T to Ey and consider S, T : Ey → E′′. Since Ey

is an AM -space with unit, it follows from Theorem 4.82 that there exist
positive multiplication operators M1, . . . , Mk on Ey and order projections
P1, . . . , Pk on E′′ with

φ
(∣∣∣S −

k∑
i=1

PiTMi

∣∣∣u
)

< ε and 0 ≤
k∑

i=1

PiTMi ≤ T on Ey . (�)

By Lemma 4.78 each Mi : Ey → Ey is continuous for the norm induced by
E, and hence each Mi extends uniquely to a continuous operator (which we
denote by Mi again) from Ey to Ey. From (�) we see that

0 ≤
k∑

i=1

PiTMi ≤ T

also holds on Ey.
Since Pi carries E into the ideal generated by E in E′′ and S is o-

weakly compact (see Theorem 5.74), it follows that S′′Pi carries E into
E. Let Ri : E → E denote the restriction of S′′Pi to E. Also, from
E−→S Ey−→Mi E, we see that Si = MiS is a continuous operator from
E to E.

Now consider the operator R = S −
∑k

i=1 PiTMi : Ey → E′′, and note
that since Ey and Ey are both ideals of E, the moduli of the operators
R : Ey → E′′ and R : Ey → E′′ agree on Ey. In particular, note that

|R| ≤ S +
k∑

i=1

PiTMi ≤ 2T
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holds of Ey, and so in view of S(E) ⊆ Ey we have

‖RSx‖ ≤
∥∥|R|(|Sx|)

∥∥ ≤ 2‖T‖·‖Sx‖ ≤ 2‖T‖·‖S‖ ≤ 2

for all x ∈ U . Therefore, if x ∈ U and x′ ∈ U ′, then
∣∣∣
〈
x′,
(
S3 −

k∑
i=1

RiTSi

)
x
〉∣∣∣ =

∣∣〈x′, S′′RSx
〉∣∣ ≤ 〈|S′x′|, |RSx|

〉

≤
(
|S′x′| −φ

)+(|RSx|) + [|S′x′| ∧ φ](|RSx|)
≤
∥∥(|S′x′| −φ)+

∥∥·‖RSx‖+ [|S′x′| ∧ φ](|RSx|)
≤ 2ε +

(
|S′x′| ∧ φ

)[
|R|
(
(|Sx| −u)+ + |Sx| ∧ u

)]
≤ 2ε + |S′x′|

(
2T ([|Sx| −u]+)

)
+ φ(|R|u)

≤ 2ε + ‖S′‖·‖x′‖·2‖T‖·
∥∥(|Sx| −u)+

∥∥+ ε

≤ 2ε + 2ε + ε = 5ε ,

from which it follows that
∥∥∥S3 −

k∑
i=1

RiTSi

∥∥∥ ≤ 5ε .

Since ε > 0 is arbitrary, the latter shows that S3 ∈ Ring(T ), and the proof
of the theorem is finished.

An immediate consequence of the preceding result is the following.

Corollary 5.76. Assume that a pair of positive operators S, T : E → E on
a Banach lattice satisfies 0 ≤ S ≤ T . If anyone of the operators S or T is
L- or M -weakly compact, then S3 belongs to Ring(T ).

Proof. By Theorems 5.71, 5.72, and 5.64, we see that S and S′ are both
semicompact. The conclusion now follows from Theorem 5.75.

The next immediate consequence of Theorem 5.75 generalizes a result
of B. de Pagter [159] and presents an alternative proof of Theorem 5.13.

Corollary 5.77. If a pair of positive operators S, T : E → E on a Banach
lattice satisfies 0 ≤ S ≤ T and T is compact, then S3 belongs to Ring(T ).

Proof. The conclusion follows from Theorem 5.75 by observing that S and
S′ are both semicompact operators.

The last result of the section presents a condition for the square of an
operator to lie in the ring ideal generated by another operators.

Theorem 5.78. Let S, T : E → E be two positive operators on a Banach
lattice such that 0 ≤ S ≤ T holds. If E has order continuous norm and S
is semicompact, then S2 belongs to Ring(T ).
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Proof. Without loss of generality we can assume that ‖T‖ ≤ 1 holds. Let
ε > 0. Pick some u ∈ E+ such that ‖(|Sx| −u)+‖ < ε holds for all x ∈ U .
By Theorem 4.87 there exist positive operators M1, . . . , Mk on E and order
projections P1, . . . , Pk on E satisfying

0 ≤
k∑

i=1

PiTMi ≤ T and
∥∥∥
∣∣∣S −

k∑
i=1

PiTMi

∣∣∣u
∥∥∥ < ε .

Put R = S −
∑k

i=1 PiTMi. Clearly,
∥∥|R|u

∥∥ < ε and |R| ≤ 2T hold.
Now for x ∈ U we have
∥∥∥
(
S2 −

k∑
i=1

PiTMiS
)
x
∥∥∥ = ‖RSx‖ ≤

∥∥|R|([|Sx| −u]+)
∥∥+
∥∥|R|u

∥∥

≤ 2‖T‖·
∥∥(|Sx| −u)+

∥∥+ ε < 2ε + ε = 3ε ,

and consequently
∥∥∥S2 −

k∑
i=1

PiTMiS
∥∥∥ ≤ 3ε .

Since ε > 0 is arbitrary and
∑k

i=1 PiTMiS belongs to Ring(T ), we see that
indeed S2 ∈ Ring(T ).

It is interesting to note that the preceding result can be used to provide
an alternative proof of Corollary 5.16.

Exercises

1. Give an example of an o-weakly compact operator whose adjoint is not
o-weakly compact. [Hint : Consider the identity operator I : �1 → �1. ]

2. Let S, T : E → F be two positive operators between Banach lattices such
that 0 ≤ S ≤ T holds. Establish the following statements.
(a) If T is o-weakly compact, then S is o-weakly compact.
(b) If T is M -weakly compact, then S is M -weakly compact.
(c) If T is L-weakly compact, then S is L-weakly compact.

3. If T : E → X is a continuous operator from a Banach lattice to a Banach
space, then show that the following statements are equivalent.
(a) T is o-weakly compact.
(b) If 0 ≤ xn ↑≤ x holds in E, then {Txn} is norm convergent in X.
(c) For each order bounded sequence {xn} ⊆ E+ with xn−→w 0 we have

‖Txn‖ → 0.
(d) The set T ′(U ′) is σ(E′, A)-compact, where U ′ is the closed unit ball

of X ′ and A is the ideal generated by E in E′′.

4. For a positive operator T : E → F between Banach lattices establish the
following statements.
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(a) If T is an L-weakly compact lattice homomorphism, then T is also
M -weakly compact.

(b) If T is M -weakly compact and interval preserving, then T is also
L-weakly compact.

5. Let T : E → F be a positive operator from an AM -space with unit to
a Banach lattice with order continuous norm. Show that T has order
continuous norm and that AT ⊆ Ring(T ). [Hint : If e is the unit of E
and S : E → F is any positive operator, then note that ‖S‖ = ‖S(e)‖. ]

6. Show that a continuous operator from a Dedekind σ-complete Banach
lattice to a separable Banach space is o-weakly compact. [Hint : Use
Theorem 4.43. ]

7. Show that a positive operator between Banach lattices has order contin-
uous norm if and only if its adjoint likewise has order continuous norm.

8. (Dodds [53]) If T : E → X is a continuous operator from a Banach lat-
tice to a Banach space, then show that each one of the following two
statements implies that T is o-weakly compact.
(a) c0 is not embeddable in X.
(b) E is Dedekind σ-complete and �∞ is not embeddable in X.

[Hint : For (a) use Theorem 4.63. ]

9. Show that an L-weakly compact operator T : X → E admits a factoriza-
tion through a reflexive Banach lattice F

X E

F

T

S Q

such that:
(a) Q is an L-weakly compact interval preserving lattice homomorphism.
(b) S is L-weakly compact.
(c) S is positive if T is positive.

[Hint : Let U be the closed unit ball of X, and let W be the convex solid
hull of T (U). By Theorem 5.55 the set W is a weakly relatively compact
subset of E. Now let Ψ be the reflexive Banach lattice of Theorems 5.37
and 5.41. Then we have the factorization

X E

Ψ

T

S J

where S(x) = T (x) and J : Ψ → E is the natural inclusion (which is an
interval preserving lattice homomorphism). Since the norm topologies of
Ψ and E agree on W (see Exercise 10 of Section 5.2), it follows that S
is L-weakly compact. To see that J is also L-weakly compact, let {xn}
be a disjoint sequence of Ψ+ satisfying |||xn||| ≤ 1 for each n. Fix k
and note that ‖xn‖k ≤ 1 holds for each n. Thus, for each n there exist
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0 ≤ wn ∈ W and 0 ≤ yn ∈ E with ‖yn‖ ≤ 1 and xn = 2(2kwn + 2−kyn).
Clearly, {wn} is a disjoint sequence, and therefore lim ‖wn‖ = 0. From
‖xn‖ ≤ 2k+1‖wn‖ + 21−k, we see that lim sup ‖xn‖ ≤ 21−k holds. Since
k is arbitrary, we have lim ‖Jxn‖ = 0. ]

10. Show that an M -weakly compact operator T : E → X admits a factor-
ization through a reflexive Banach lattice F

E X

F

T

Q S

such that:
(a) Q is an M -weakly compact lattice homomorphism.
(b) S is M -weakly compact.
(c) S is positive if T is also positive.

[Hint : Use the preceding exercise by observing that T ′ : X ′ → E′ is L-
weakly compact. ]

11. (Aliprantis–Burkinshaw [17]) This exercise is the dual to Theorem 5.58.
Let T : X → E be a continuous operator from a Banach space to a Banach
lattice. If T ′ is o-weakly compact, then show that T admits a factorization
through a Banach lattice F

X E

F

T

S Q

such that:
(a) F ′ is a KB-space.
(b) Q is an interval preserving lattice homomorphism.
(c) S is positive if T is also positive.

[Hint : Let W be the convex solid hull of T (U), and consider the Ba-
nach lattice Ψ of Theorem 5.41. Now using the fact that x′

n ↓ 0 implies
lim ‖T ′x′

n‖ = 0, parallel the proof of Theorem 5.43. ]

12. Let T : E → E be a positive L-weakly compact operator on a Banach
lattice such that T [0, x] is norm totally bounded for each x ∈ E+. If
another positive operator S : E → E satisfies 0 ≤ S ≤ T , then show
that:
(a) S[0, x] is norm totally bounded for each x ∈ E+.
(b) S2 is a compact operator.

13. Let T : E → E be a positive M -weakly compact operator on a Banach
lattice such that T [0, x] is norm totally bounded for each x ∈ E+. If
another operator S : E → E satisfies 0 ≤ S ≤ T , then show that S2 is a
compact operator.

14. Let T : E → F be a positive operator between two Banach lattices. Then
show that T is both L- and M -weakly compact if and only if for each
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ε > 0 there exist u ∈ E+ and 0 ≤ y′ ∈ F ′ such that
∥∥T (|x| −u)+

∥∥ < ε and
∥∥T ′(|x′| − y′)+

∥∥ < ε

holds for all x ∈ E and x′ ∈ F ′ with ‖x‖ ≤ 1 and ‖x′‖ ≤ 1.

15. Establish the following properties:
(a) Every continuous operator from a Banach space to an AM -space

with unit is semicompact.
(b) Every regular operator from an AM -space with unit to a Banach

lattice is semicompact.

16. Show that the identity operator I : �2 → �2 is not a semicompact operator
(and conclude from this that the adjoint of an o-weakly compact operator
need not be semicompact).

17. Let E = c0 or E = �p for some 1 ≤ p < ∞. Then show that an operator
T : E → E is compact if and only if T is semicompact.

18. Show that an operator from a Banach space to a Banach lattice with order
continuous norm is semicompact if and only if it is L-weakly compact.

19. Generalize Theorem 5.75 as follows: Let S, T : E → E be two positive
operators on a Banach lattice such that 0 ≤ S ≤ T holds. If for some
n ∈ N the operators Sn and (Sn)′ are both semicompact, then S2n+1

belongs to Ring(T ).

20. Let T : E → E be a positive L- or M -weakly compact operator on a
Dedekind complete Banach lattice. If T1, T2, T3 ∈ AT , then show that
T1T2T3 ∈ Ring(T ).

21. Generalize Theorem 5.49 as follows: Consider the scheme of positive op-
erators

E−→S1 G−→S2 H

between Banach lattices such that H has order continuous norm. If S2

is dominated by a compact operator and (S1)
′ is o-weakly compact, then

show that S2S1 is a compact operator. [Hint : Use Exercise 11 of this
section. ]

22. Let T : E → X be a continuous operator from a locally convex-solid Riesz
space to a topologically complete locally convex space. Then show that
the following statements are equivalent:
(a) T maps order intervals to weakly relatively compact subsets of the

space X.
(b) For every order bounded disjoint sequence {xn} of E the sequence

{Txn} converges to zero in X.
(c) T ′′(A) ⊆ X, where A is the ideal generated by E in E′′.

23. If 0 ≤ x = (x1, x2, . . .) ∈ �∞, then show that the order interval [0, x] is
weakly compact if and only if limxn = 0 (in which case [0, x] is also norm
compact).
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5.4. Dunford–Pettis Operators

In a remarkable paper [56], N. Dunford and P. J. Pettis proved (among
other things) that a weakly compact operator from L1(µ) to itself carries
weakly convergent sequences to norm convergent sequences. This prompted
A. Grothendieck [72] to call every operator with this property a Dunford–
Pettis operator. Accordingly, following A. Grothendieck we shall say that an
operator T : X → Y between two Banach spaces is a Dunford–Pettis op-
erator (or that T has the Dunford–Pettis property) whenever xn−→w 0
in X implies ‖Txn‖ → 0 or, equivalently, whenever xn−→w x in X implies
lim ‖Txn −Tx‖ = 0.

Every Dunford–Pettis operator is continuous. (Indeed, if T is a Dunford–
Pettis operator and ‖xn‖ → 0, then xn−→w 0, and so ‖Txn‖ → 0.) A com-
pact operator is necessarily a Dunford–Pettis operator. From Theorem 3.40,
it is easy to see that whenever X is a reflexive Banach space, then an op-
erator with domain X is Dunford–Pettis if and only if it is compact. On
the other hand, a Dunford–Pettis operator need not be a compact operator,
and its adjoint may fail as well to have the Dunford–Pettis property. For
instance, the identity operator I : �1 → �1 is a Dunford–Pettis operator (see
Theorem 4.32) which is not weakly compact. Moreover, its adjoint is the
identity operator I : �∞ → �∞, which is not a Dunford–Pettis operator.

In terms of weak Cauchy sequences the Dunford–Pettis operators are
characterized as follow.

Theorem 5.79. An operator T : X → Y between two Banach spaces is a
Dunford–Pettis operator if and only if T carries weakly Cauchy sequences
of X to norm convergent sequences of Y .

Proof. Assume that T is a Dunford–Pettis operator, and let {xn} be a
weak Cauchy sequence of X. If {Txn} is not a norm Cauchy sequence of
Y , then there exist some ε > 0 and a subsequence {yn} of {xn} satisfying
‖T (y2n − y2n−1)‖ > ε for all n. Since y2n − y2n−1−→w 0 holds in X, it follows
that lim ‖T (y2n − y2n−1)‖ = 0, which is impossible. Thus, {Txn} is a norm
Cauchy sequence, and hence is norm convergent in Y .

For the converse assume that T carries weakly Cauchy sequences to norm
convergent sequences, and let xn−→w 0 in X. Then {xn} is clearly a weak
Cauchy sequence of X, and so {Txn} is norm convergent in Y . Since T is
continuous (why?), Txn−→w 0 also holds in Y , from which it follows that
‖Txn‖ → 0.

From the preceding result and Theorem 4.72, the following theorem
should be immediate.
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Theorem 5.80. If �1 does not embed in a Banach space X, then every
Dunford–Pettis operator from X to an arbitrary Banach space is compact.

In terms of compact and weakly compact operators the Dunford–Pettis
operators are characterized as follows.

Theorem 5.81. For a continuous operator T : X → Y between two Banach
spaces the following statements are equivalent.

(1) T is a Dunford–Pettis operator.

(2) T carries weakly relatively compact subsets of X to norm totally
bounded subsets of Y .

(3) For an arbitrary Banach space Z and every weakly compact operator
S : Z → X, the operator TS is a compact operator.

(4) For every weakly compact operator S : �1 → X, the operator TS is
compact.

Proof. (1) =⇒ (2) Let W be a weakly relatively compact subset of X. If
{xn} is a sequence of W , then there exists a subsequence {yn} of {xn}
satisfying yn−→w y in X, and so lim ‖Tyn −Ty‖ = 0. This shows that
T (W ) is a norm totally bounded set.

(2) =⇒ (3) and (3) =⇒ (4) are obvious.

(4) =⇒ (1) Let xn−→w 0 in X and define the operator S : �1 → X by

S(α1, α2, . . .) =
∞∑

n=1

αnxn .

By Theorem 5.26, the operator S is weakly compact, and so by our hypoth-
esis TS is a compact operator. Now let {en} denote the sequence of basic
vectors of �1. Clearly, TS(en) = Txn−→w 0 holds. On the other hand, since
TS is compact, we see that every subsequence of {TSen} has a subsequence
converging in norm to zero. Therefore, ‖Txn‖ → 0 holds, and this proves
that T is a Dunford–Pettis operator.

The Dunford–Pettis operators are related with the Dunford–Pettis prop-
erty of Banach spaces. Following A. Grothendieck [72], we say that a Banach
space X has the Dunford–Pettis property whenever xn−→w 0 in X and
x′

n−→w 0 in X ′ imply limx′
n(xn) = 0. Again, Grothendieck’s definition has

been inspired by the paper of N. Dunford and P. J. Pettis [56]. From the
identity

x′
n(xn) = x′

n(x) + x′(xn −x) + (x′
n −x′)(xn −x) ,

it should be obvious that a Banach space X has the Dunford–Pettis property
if and only if xn−→w x in X and x′

n−→w x′ in X ′ imply x′
n(xn) → x′(x).
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J. W. Brace [43] and A. Grothendieck [72] have characterized the
Dunford–Pettis property as follows.

Theorem 5.82 (Brace–Grothendieck). For a Banach space X the following
statements are equivalent.

(1) X has the Dunford–Pettis property.

(2) Every weakly compact operator from X to an arbitrary Banach
space maps weakly compact sets to norm compact sets.

(3) Every weakly compact operator from X to an arbitrary Banach
space is a Dunford–Pettis operator.

(4) Every weakly compact operator from X to c0 is a Dunford–Pettis
operator.

Proof. (1) =⇒ (2) Let T : X → Y be a weakly compact operator (where Y
is a Banach space), and let W be a weakly compact subset of X. Clearly,
T (W ) is norm closed. So, in order to establish that T (W ) is norm compact
it suffices to show that every sequence in T (W ) has a norm convergent
subsequence.

To this end, let {xn} ⊆ W . By passing to a subsequence, we can assume
that xn−→w x holds in X. We claim that {Txn} has a subsequence that
converges in norm to Tx. To see this, for each n pick some fn ∈ Y ′ with
‖fn‖ = 1 and ∥∥T (xn −x)

∥∥ ≤ 2
∣∣fn(T (xn −x))

∣∣ . (�)

Since T ′ : Y ′ → X ′ is a weakly compact operator, there exists a subsequence
{fkn} of {fn} such that T ′fkn−→w f holds in X ′. On the other hand, the
Dunford–Pettis property of X implies

lim
n→∞

∣∣T ′fkn(xkn −x)
∣∣ = |f(0)| = 0 .

Therefore, it follows from (�) that lim ‖T (xkn −x)‖ = 0. That is, the sub-
sequence {Txkn} of {Txn} converges in norm to Tx.

(2) =⇒ (3) This follows immediately from Theorem 5.81.

(3) =⇒ (4) Obvious.

(4) =⇒ (1) Assume xn−→w 0 in X and x′
n−→w 0 in X ′. Consider the

operator T : X → c0 defined by

T (x) =
(
x′

1(x), x′
2(x), . . .

)
.

By Theorem 5.26 the operator T is weakly compact, and so by our hypothesis
T is also a Dunford–Pettis operator. In particular, xn−→w 0 in X implies
‖Txn‖∞ → 0. Now a glance at the inequality |x′

n(xn)| ≤ ‖Txn‖∞ shows
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that limx′
n(xn) = 0 holds. That is, X has the Dunford–Pettis property,

and the proof of the theorem is finished.

Theorem 5.83. A reflexive Banach space with the Dunford–Pettis property
is finite dimensional.

Proof. If X is a reflexive Banach space with the Dunford–Pettis property,
then the identity operator I : X → X is weakly compact, and so I must be
a Dunford–Pettis operator. Since X is reflexive, the latter implies that I is
a compact operator, and this guarantees that X is finite dimensional.

If the dual of a Banach space has the Dunford–Pettis property, then the
Banach space has the Dunford–Pettis. This is due to A. Grothendieck [72].

Theorem 5.84 (Grothendieck). If the norm dual X ′ of a Banach space
X has the Dunford–Pettis property, then X itself has the Dunford–Pettis
property.

Proof. Let X ′ have the Dunford–Pettis property, and consider two weakly
compact operators Z−→S X−→T Y (where Y and Z are Banach spaces).
Taking adjoints we have Y ′−→T ′

X ′−→S′
Z ′ with S′ and T ′ weakly compact.

Since X ′ has the Dunford–Pettis property, Theorem 5.82 shows that S′ is a
Dunford–Pettis operator, and so S′T ′ = (TS)′ is a compact operator. Thus,
TS is a compact operator, and by Theorem 5.81 the operator T must be a
Dunford–Pettis operator. Now by Theorem 5.82 the Banach space X must
have the Dunford–Pettis property.

A. Grothendieck [72] also has shown that AL- and AM -spaces have the
Dunford–Pettis property.

Theorem 5.85 (Grothendieck). Every AL-space and every AM -space has
the Dunford–Pettis property.

Proof. Since the norm dual of an AL-space and the double norm dual of
an AM -space are AM -spaces with units, according to Theorem 5.84, it is
enough to establish the result when E is an AM -space with unit.

To this end, let E be an AM -space with unit e, let xn−→w 0 in E, and
let x′

n−→w 0 in E′. Pick some M > 0 such that ‖xn‖ ≤ M holds for all n.
Let ε > 0. Now the set {x′

1, x
′
2, . . .} is a weakly relatively compact subset of

E′, and so by Theorem 4.41 there exists some 0 ≤ y′ ∈ E′ satisfying∥∥(|x′
n| − y′)+

∥∥ < ε
M

for all n. Since the lattice operations of E are weakly sequentially contin-
uous (see Theorem 4.31), we have |xn|−→w 0, and thus there exists some k
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satisfying y′(|xn|) < ε for all n ≥ k. In particular, for n ≥ k we have∣∣x′
n(xn)

∣∣ ≤ |x′
n|(|xn|) =

(
|x′

n| − y′
)+(|xn|) +

(
|x′

n| ∧ y′
)
(|xn|)

≤ M ·
∥∥(|x′

n| − y′)+
∥∥+ y′(|xn|) < M · ε

M + ε = 2ε ,

which shows that x′
n(xn) → 0 holds, as required.

As an application of the preceding theorem, let us establish that the
topological structures of AL- and AM -spaces differ in an essential manner.

Theorem 5.86. An AL-space is linearly homeomorphic to an AM -space if
and only if it is finite dimensional.

Proof. Let E be an AM -space which is linearly homeomorphic to an AL-
space. This implies that E is weakly sequentially complete, and so E is a
KB-space. Since E′ is an AL-space, it follows that E is a reflexive Banach
lattice (Theorem 4.70). Now note that a reflexive Banach space with the
Dunford–Pettis property is finite dimensional.

The square of a weakly compact operator on a Banach space with the
Dunford–Pettis property is a compact operator. The details are included in
the next theorem.

Theorem 5.87. Let X−→S Y −→T Z be two weakly compact operators be-
tween Banach spaces. If Y has the Dunford–Pettis property, then TS is a
compact operator.

Proof. By Theorem 5.82 the operator T is Dunford–Pettis, and so TS is a
compact operator.

As a consequence of the preceding theorem we have the following classical
result of N. Dunford and P. J. Pettis [56].

Corollary 5.88 (Dunford–Pettis). If T is a weakly compact operator on
an AL- or an AM -space, then T 2 is a compact operator.

We now come to the following question first studied by the authors
in [11]: If a positive operator S between Banach lattices is dominated by a
Dunford–Pettis operator, is then S necessarily Dunford–Pettis?

In general, the answer is negative. For an example, consider the positive
operators S, T : L1[0, 1] → �∞ defined by

S(f) =
(∫ 1

0
f(x)r+

1 (x) dx,

∫ 1

0
f(x)r+

2 (x) dx, . . .
)

and

T (f) =
(∫ 1

0
f(x) dx,

∫ 1

0
f(x) dx, . . .

)
,
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where {rn} denotes the sequence of Rademacher functions on [0, 1]. Clearly,
0 ≤ S ≤ T holds and T is a compact (and hence a Dunford–Pettis) operator.
On the other hand, we have rn−→w 0 in L1[0, 1] (why?). Therefore, in view
of ‖Srn‖∞ ≥

∫ 1
0 rn(x)r+

n (x) dx = 1
2 , we see that S is not a Dunford–Pettis

operator.
In the sequel, we shall investigate what effect a Dunford–Pettis operator

has on the operators it dominates. Recall that a Banach lattice is said
to have weakly sequentially continuous lattice operations whenever xn−→w 0
implies |xn|−→w 0. Every AM -space has this property (Theorem 4.31). Also,
any Banach lattice with the Schur property (i.e., xn−→w 0 implies ‖xn‖ → 0)
has weakly sequentially continuous lattice operations. Thus, for example,
the Banach lattices C[0, 1], �1, and �1 ⊕ C[0, 1] all have weakly sequentially
continuous lattice operations.

Theorem 5.89. Let S, T : E → F be two positive operators between Banach
lattices such that 0 ≤ S ≤ T . If E has weakly sequentially continuous lattice
operations and T is Dunford–Pettis, then S is likewise Dunford–Pettis.

Proof. If xn−→w 0 holds in E, then |xn|−→w 0 also holds in E, and so
lim ‖T |xn|‖ = 0. Using the inequalities |Sxn| ≤ S|xn| ≤ T |xn|, we see that
‖Sxn‖ ≤ ‖T |xn|‖ for all n, from which we get lim ‖Sxn‖ = 0.

If a positive Dunford–Pettis operator has its range in a Banach lattice
with order continuous norm, then every positive operator that it dominates
is also Dunford–Pettis. This result is stated next, and is due to N. J. Kalton
and P. Saab [83].

Theorem 5.90 (Kalton–Saab). Let S : E → F be a positive operator be-
tween two Banach lattices such that F has order continuous norm. If S is
dominated by a Dunford–Pettis operator, then S itself is Dunford–Pettis.1

Proof. Assume that F has order continuous norm and that T : E → F is
a Dunford–Pettis operator satisfying 0 ≤ S ≤ T . Let xn−→w 0 in E, and
let ε > 0. Put x =

∑∞
n=1 2−n|xn|, and let Ex be the ideal generated by x

in E. Also, let W denote the solid hull of the weakly relatively compact
subset {x1, x2, . . .} of E. Clearly, W ⊆ Ex holds. Next, note that if {yn} is
a disjoint sequence of W , then (by Theorem 4.34) we have yn−→w 0 in E,
and so ‖Tyn‖ → 0. Thus, by Theorem 4.36, there exists some 0 ≤ u ∈ Ex

such that ∥∥T (|xn| −u)+
∥∥ < ε

holds for all n.

1This theorem also was proved by W. Haid [75] and B. de Pagter [159] under
some extra assumptions.
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Next, consider the operators S, T : Ex → F . Then, by Theorem 4.87,
there exist operators M1, . . . , Mk on Ex and positive operators L1, . . . , Lk

on F satisfying

∥∥∥
∣∣∣S −

k∑
i=1

LiTMi

∣∣∣u
∥∥∥ ≤ ε and 0 ≤

k∑
i=1

LiTMi ≤ T on Ex .

Since each Mi : Ex → Ex is continuous for the norm induced by E, it is
easy to see that Mi(xn)−→w 0 holds in E. Thus, using the fact that T is
a Dunford–Pettis operator, we see that lim

∥∥∑k
i=1 LiTMi(xn)

∥∥ = 0. Pick
some m such that

∥∥∑k
i=1 LiTMi(xn)

∥∥ < ε holds for all n ≥ m. Now note
that for n ≥ m we have

‖Sxn‖ ≤
∥∥∥
(
S −

k∑
i=1

LiTMi

)
xn

∥∥∥+
∥∥∥

k∑
i=1

LiTMi(xn)
∥∥∥

≤
∥∥∥
∣∣∣S −

k∑
i=1

LiTMi

∣∣∣(|xn| −u
)+∥∥∥+

∥∥∥
∣∣∣S −

k∑
i=1

LiTMi

∣∣∣u
∥∥∥+ ε

≤ 2
∥∥T (|xn| −u)+

∥∥+ ε + ε < 4ε ,

and so ‖Sxn‖ → 0 holds, as desired.

It is interesting to know that the preceding theorem can be used to prove
Theorem 5.20. To see this, assume that E and F are two Banach lattices
such that E′ and F have order continuous norms, and let S : E → F be
a positive operator dominated by a compact operator. Then, according to
Theorem 5.44, the operator S factors through a reflexive Banach lattice G

E F

G

S

Q R

with R positive and dominated by a compact operator. By Theorem 5.90
the operator R is Dunford–Pettis, and hence since G is a reflexive Banach
lattice, R is a compact operator. Therefore, S = RQ is a compact operator.

Every Dunford–Pettis operator maps order intervals to weakly relatively
compact sets.

Theorem 5.91. Every Dunford–Pettis operator T : E → X from a Banach
lattice to a Banach space is o-weakly compact (i.e., it carries order intervals
to weakly relatively compact sets).



5.4. Dunford–Pettis Operators 347

Proof. If {xn} is an order bounded disjoint sequence of E, then xn−→w 0
holds in E, and so lim ‖Txn‖ = 0. The conclusion now follows immediately
from Theorem 5.57.

An immediate consequence of the preceding theorem is that the square
of a Dunford–Pettis operator on a Banach lattice carries order intervals to
norm totally bounded sets. In a more general context we have the following
result.

Corollary 5.92. Let E−→T X−→S Y be two Dunford–Pettis operators be-
tween Banach spaces. If E is a Banach lattice, then ST [0, x] is a norm
totally bounded subset of Y for each x ∈ E+.

The next result is due to N. J. Kalton and P. Saab [83].

Theorem 5.93 (Kalton–Saab). Consider the scheme of operators

E−→S1 F−→S2 X ,

where E and F are Banach lattices and S1 is a positive operator. If S1 is
dominated by a Dunford–Pettis operator and S2 is o-weakly compact, then
S2S1 is a Dunford–Pettis operator.

Proof. By Theorem 5.58 the operator S2 admits a factorization through a
Banach lattice G with order continuous norm

E F X

G

S1

Q

S2

S

such that Q is a lattice homomorphism. Clearly, the positive operator
QS1 : E → G is dominated by a Dunford–Pettis operator. Thus, by
Theorem 5.90, the operator QS1 is also Dunford–Pettis, and consequently
S2S1 = S(QS1) is likewise a Dunford–Pettis operator.

The authors proved in [11] that if a positive operator on a Banach
lattice is dominated by a Dunford–Pettis operator, then its third power is
a Dunford–Pettis operator. The next consequence of Theorem 5.93 is an
improvement of this result and is due to N. J. Kalton and P. Saab [83].

Corollary 5.94. If a positive operator S on a Banach lattice is dominated
by a Dunford–Pettis operator, then S2 also is a Dunford–Pettis operator.

The next result is taken from [15] and presents another variation of
Theorem 5.14 (see also Theorem 5.50).
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Theorem 5.95. Consider the scheme of positive operators

E−→S1 F−→S2 G−→S3 H

between Banach lattices. If S1 is dominated by a weakly compact operator,
S2 by a compact operator, and S3 by a Dunford–Pettis operator, then S3S2S1

is a compact operator.

Proof. The proof is based upon the following diagram:

E F G H

X

S1

T1

S2 S3

T2

According to Theorem 5.45, the scheme of operators E−→S1 F−→S2 G fac-
tors through a reflexive Banach lattice X with T2 positive and dominated
by a positive compact operator. By Theorem 5.93 the operator S3T2 is
Dunford–Pettis, and hence S3S2S1 = (S3T2)T1 must be a compact opera-
tor.

In the preceding theorem, the domination properties of the first and last
operators cannot be reversed. For instance, if S1 and S2 are the operators
of Example 5.17, then in the scheme of operators

�1−→I �1−→S1 L2[0, 1]−→S2 �∞ ,

the identity operator I is a positive Dunford–Pettis operator and S1 and
S2 are both positive and dominated by compact operators. However, as in
Example 5.17, it is easy to see that S2S1I is not a compact operator.

We continue with a useful weak continuity property of regular operators.
It is due to the authors [11].

Theorem 5.96 (Aliprantis–Burkinshaw). Let T : E → F be a regular opera-
tor between two Banach lattices such that T [0, x] is |σ|(F, F ′)-totally bounded
for each x ∈ E+. If xn−→w 0 holds in E, then |Txn|−→w 0 in F .

Proof. Assume xn−→w 0 in E. Let 0 ≤ f ∈ F ′, and fix ε > 0. By Theo-
rem 4.37 there exists some x ∈ E+ such that

|T ′|f(|xn| −x)+ < ε

holds for all n. Also, from Theorem 3.27, it follows that the set T ′[−f, f ] is
|σ|(E′, E)-totally bounded (see Exercise 8 of Section 3.3). So, there exists
a finite set {g1, . . . , gk} ⊆ [−f, f ] such that for each g ∈ [−f, f ] we have
|T ′(g− gi)|(x) < ε for at least one 1 ≤ i ≤ k. Since xn−→w 0 holds in E,
there exists some m with |gi(Txn)| < ε for each i = 1, . . . , k and all n ≥ m.
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Now let g ∈ [−f, f ]. Choose 1 ≤ i ≤ k with |T ′(g− gi)|(x) < ε, and note
that |g− gi| ≤ f holds. In particular, for n ≥ m we have∣∣g(Txn)

∣∣ ≤
∣∣T ′(g− gi)(xn)

∣∣+ ∣∣gi(Txn)
∣∣

≤
∣∣T ′(g− gi)

∣∣(|xn| −x)+ +
∣∣T ′(g− gi)

∣∣(x) + ε

≤ |T ′|f(|xn| −x)+ + 2ε ≤ 3ε .

In view of Theorem 1.23, the latter shows that

f(|Txn|) = max
{
|g(Txn)| : − f ≤ g ≤ f

}
≤ 3ε

holds for all n ≥ m. That is, |Txn|−→w 0 holds in F , as desired.

P. G. Dodds and D. H. Fremlin [54] and J. Bourgain [42] proved that the
Dunford–Pettis operators on an AL-space form a band. This was generalized
by the authors in [11] as follows.

Theorem 5.97 (Aliprantis–Burkinshaw). Let E be a Banach lattice with
order continuous norm, and let F be an AL-space. Then, a regular operator
T : E → F is a Dunford–Pettis operator if and only if T maps order intervals
to norm compact sets.

In particular, in this case, the vector space of all Dunford–Pettis opera-
tors of Lb(E, F ) is a band.

Proof. Assume first that T is Dunford–Pettis operator. Since E has order
continuous norm, we know that the order intervals of E are weakly compact,
and so T must map order intervals to norm compact sets.

For the converse, let T map order intervals of E to norm compact sub-
sets of F , and let xn−→w 0 in E. By Theorem 5.96 we have |Txn|−→w 0
in F . Now if e′ is the unit of F ′, then ‖Txn‖ = e′(|Txn|) → 0, and so
T is a Dunford–Pettis operator. The last part follows immediately from
Theorem 5.10.

Another class of operators related to the Dunford–Pettis operators is the
class of weak Dunford–Pettis operators which was introduced by the authors
in [11]. An operator T : X → Y between two Banach spaces is said to be
a weak Dunford–Pettis operator whenever xn−→w 0 in X and y′n−→w 0
in Y ′ imply lim〈Txn, y′n〉 = 0 (or, equivalently, whenever xn−→w x in X and
y′n−→w y′ in Y ′ imply lim〈Txn, y′n〉 = 〈Tx, y′〉).

Clearly, a Dunford–Pettis operator is a weak Dunford–Pettis operator.
If Y is reflexive, then an easy application of Theorem 3.40 shows that the no-
tions of weak Dunford–Pettis and Dunford–Pettis operator coincide. Also,
if X has the Dunford–Pettis property, then every continuous operator from
X to Y is a weak Dunford–Pettis operator. The weak Dunford–Pettis op-
erators enjoy properties similar to those of compact and Dunford–Pettis
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operators. For instance, the weak Dunford–Pettis operators on a Banach
space X form a closed ring ideal of L(X).

A weak Dunford–Pettis operator need not be a Dunford–Pettis operator.
For example, let {rn} denote the sequence of Rademacher functions of [0, 1],
and let S : L1[0, 1] → �∞ be the positive operator defined by

S(f) =
(∫ 1

0
f(x)r+

1 (x) dx,

∫ 1

0
f(x)r+

2 (x) dx, . . .
)

.

From rn−→w 0 and ‖Srn‖ ≥
∫ 1
0 rn(x)r+

n (x) = 1
2 , we see that S is not a

Dunford–Pettis operator. However, since L1[0, 1] has the Dunford–Pettis
property, it is automatically true that S is a weak Dunford–Pettis operator.

Our next objective is to connect the weak Dunford–Pettis operators with
the class of Dunford–Pettis sets. Following K. T. Andrews [25] we say that
a norm bounded subset A of a Banach space X is a Dunford–Pettis set
whenever every weakly compact operator from X to an arbitrary Banach
space carries A to a norm totally bounded set. The Dunford–Pettis sets
were characterized by K. T. Andrews in [25] as follows.

Theorem 5.98 (Andrews). For a norm bounded subset A of a Banach space
X the following statements are equivalent.

(1) A is a Dunford–Pettis set.

(2) Every weakly compact operator from X to c0 carries A to a norm
totally bounded set.

(3) Every sequence {x′
n} ⊆ X ′ satisfying x′

n−→w 0 in X ′ converges
uniformly to zero on the set A.

Proof. (1) =⇒ (2) Obvious.

(2) =⇒ (3) Let x′
n−→w 0 in X ′. Consider the operator T : X → c0

defined by
T (x) =

(
x′

1(x), x′
2(x), . . .

)
.

By Theorem 5.26 the operator T is weakly compact. But then, according to
our hypothesis, T (A) is a norm totally bounded subset of c0, and from this
it follows that sup

{
|x′

n(x)
∣∣ : x ∈ A

}
→ 0 (see Exercise 14 of Section 3.2).

(3) =⇒ (1) Let Y be a Banach space, and let T : X → Y be a weakly
compact operator. By Theorem 5.38, we can assume without loss of gener-
ality that Y is reflexive.

Now assume by way of contradiction that T (A) is not a norm to-
tally bounded subset of Y . Then, since Y is reflexive, there exist a se-
quence {xn} in A, some y ∈ Y , and some ε > 0 satisfying Txn−→w y and
‖Txn − y|| > ε for all n. For each n choose some y′n ∈ Y ′ with ‖y′n‖ = 1 and
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y′n(Txn − y) > ε. Since Y ′ is reflexive, by passing to a subsequence, we can
assume that y′n−→w y′ holds in Y ′. Thus, T ′y′n−→w T ′y′ holds in X ′, and
from our hypothesis we see that

(y′n − y′)(Txn) = (T ′y′n −T ′y′)(xn) → 0 .

Consequently, we have

0 < ε < y′n(Txn − y) = (y′n − y′)(Txn) + y′(Txn − y) + (y′− y′n)(y) → 0 ,

which is impossible. Therefore, T (A) is a norm totally bounded subset of
Y , and the proof of the theorem is finished.

The next result characterizes the weak Dunford–Pettis operators and is
the analogue of Theorem 5.81.

Theorem 5.99. For a continuous operator T : X → Y between two Banach
spaces the following statements are equivalent:

(1) T is a weak Dunford–Pettis operator.

(2) T carries weakly compact subsets of X to Dunford–Pettis subsets
of Y .

(3) If S is a weakly compact operator from Y to an arbitrary Banach
space, then ST is a Dunford–Pettis operator.

Proof. (1) =⇒ (2) Let W be a weakly compact subset of X, and let
y′n−→w 0 in Y ′. If {y′n} does not converge uniformly to zero on T (W ), then
there exist a sequence {xn} of W , a subsequence of {y′n} (which we shall
denote by {y′n} again), and some ε > 0 satisfying |y′n(Txn)| > ε for all n.
Since W is weakly compact, we can assume that xn−→w x holds in X. Then
Txn−→w Tx holds in Y and so, since T is a weak Dunford–Pettis operator,
we have

0 < ε < |y′n(Txn)| → 0 ,

which is impossible. Thus, {y′n} converges uniformly to zero on T (W ), and
so by Theorem 5.98 it is a Dunford–Pettis set.

(2) =⇒ (3) Let Z be a Banach space, and let S : Y → Z be a weakly com-
pact operator. Also, assume xn−→w 0 in X. Since the set A = {0, x1, x2, . . .}
is weakly compact, our hypothesis implies that T (A) is a Dunford–Pettis set,
and so ST (A) is a norm totally bounded subset of Z. In view of STxn−→w 0
in Z, it follows that ‖STxn‖ → 0, and so ST is a Dunford–Pettis operator.

(3) =⇒ (1) Let xn−→w 0 in X, and let y′n−→w 0 in Y ′. Consider the
operator S : Y → c0 defined by

S(y) =
(
y′1(y), y′2(y), . . .

)
.
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Then S is weakly compact (see Theorem 5.26), and so by our hypothesis
ST is a Dunford–Pettis operator. Thus, lim ‖STxn‖∞ = 0 and the desired
conclusion follows from the inequality |y′n(Txn)| ≤ ‖STxn‖∞.

The positive weak Dunford–Pettis operators enjoy some interesting lat-
tice properties.

Theorem 5.100. Let T : E → F be a positive weak Dunford–Pettis operator
between Banach lattices. If W ⊆ E and V ⊆ F ′ are two weakly relatively
compact sets, then the following hold:

(1) For every disjoint sequence {xn} in the solid hull of W , the sequence
{Txn} converges uniformly to zero on the solid hull of V .

(2) For each ε > 0 there exists some u ∈ E+ satisfying

|f |
(
T (|x| −u)+

)
< ε

for all x ∈ W and all f ∈ V .

Proof. (1) Let {xn} ⊆ E+ be a disjoint sequence in the solid hull of W ,
and let ε > 0. We claim that there exist 0 ≤ g ∈ F ′ and a natural number
k such that

(|f | − g)+(Txn) < ε (�)
holds for all f ∈ V and all n > k.

To see this, assume by way of contradiction that(�) is false. That is,
assume that for each 0 ≤ g ∈ F ′ and each k there exist f ∈ V and m > k
with (|f | − g)+(Txm) ≥ ε. An easy inductive argument shows that there
exist a sequence {fn} ⊆ V and a subsequence {yn} of {xn} such that

(
|fn+1| − 4n

n∑
i=1

|fi|
)+

(Tyn) ≥ ε

holds for all n. Let f =
∑∞

n=1 2−n|fn| and hn =
(
|fn+1| − 4n

∑n
i=1 |fi|

)+.
Clearly, hn(Tyn) ≥ ε holds for all n. Next, put

gn =
(
|fn+1| − 4n

n∑
i=1

|fi| − 2−nf
)+

,

and note that (by Lemma 4.35) the sequence {gn} is disjoint and lies in the
solid hull of V . Thus, by Theorem 4.34, we see that gn−→w 0 holds in F ′.
Also, by Theorem 4.34 we have xn−→w 0 in E. This implies yn−→w 0 in E
and Tyn−→w 0 in F . Since T is a weak Dunford–Pettis operator, it follows
that lim gn(Tyn) = 0. On the other hand, the inequality 0 ≤ hn ≤ gn+2−nf
implies

0 < ε ≤ hn(Tyn) ≤ gn(Tyn) + 2−nf(Tyn) → 0 ,

which is impossible. Therefore, (�) is true.
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Next, pick 0 ≤ g ∈ F ′ and k so that (�) is valid, and then choose m > k
such that g(Txn) < ε holds for all n ≥ m. Now if h ∈ Sol (V ), then pick
some f ∈ V with |h| ≤ |f |, and note that

|h(Txn)| ≤ |h|(Txn) ≤ |f |(Txn) ≤ (|f | − g)+(Txn) + g(Txn) ≤ ε + ε = 2ε

holds for all n ≥ m. This shows that {Txn} converges uniformly to zero on
the solid hull of V .

(2) Consider the seminorm ρ on E defined by

ρ(x) = sup
{
|f |(|x|) : f ∈ V

}
, x ∈ E .

Clearly, ρ is a continuous seminorm on E. Also, by part (1) we have
lim ρ(Txn) = 0 for each disjoint sequence {xn} in the solid hull of W .
Therefore, by Theorem 4.36 there exists some u ∈ E+ satisfying

|f |(T (|x| −u)+) < ε

for all f ∈ V and all x ∈ W .

The weak Dunford–Pettis property of a positive operator is inherited
by the positive operators it dominates. This is due to N. J. Kalton and
P. Saab [83].

Theorem 5.101 (Kalton–Saab). If a positive operator S is dominated by a
weak Dunford-Pettis operator, then S is a weak Dunford-Pettis operator.

Proof. Let S, T : E → F be two positive operators between Banach lattices
such that 0 ≤ S ≤ T holds and T is weak Dunford–Pettis. Let xn−→w 0 in
E and fn−→w 0 in F ′.

Put x =
∑∞

n=1 2−n|xn|, and consider the ideal Ex generated by x. Then
xn−→w 0 holds in Ex (the norm closure of Ex). Thus, by restricting S and T
on Ex, we can assume without loss of generality that E has a quasi-interior
point.

Now let ε > 0. By Theorem 5.100 there exists some u ∈ E+ such that

|fn|(T (|xn| −u)+) < ε

for all n. Also, since fn−→w 0 holds in F ′, there exists (by Theorem 4.37)
some 0 ≤ φ ∈ F ′ satisfying

(|fn| −φ)+(Tu) < ε

for all n. Next, consider the operators S, T : E → F ′′ and note that 0≤S≤T
holds in Lb(E, F ′′). Thus, by Theorem 4.82 there exist positive operators
M1, . . . , Mk on E and order projections P1, . . . , Pk on F ′′ with

0 ≤
k∑

i=1

PiTMi ≤ T and φ
(∣∣∣S −

k∑
i=1

PiTMi

∣∣∣u
)

< ε .
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Put R =
∣∣S −

∑k
i=1 PiTMi

∣∣, and note that 0 ≤ R ≤ 2T . Clearly,

|fn|(R|xn|) ≤ |fn|(R(|xn| −u)+) + |fn|(Ru)

≤ 2|fn|
(
T (|xn| −u)+

)
+ (|fn| −φ)+(2Tu) + φ(Ru)

< 2ε + 2ε + ε = 5ε

holds for all n. The latter inequality easily implies

∣∣fn(Sxn)
∣∣ < 5ε +

k∑
i=1

∣∣fn(PiTMixn)
∣∣ (��)

for all n.
Now for each i = 1, . . . , k define an operator Ri : F ′ → F ′ by the formula

[Rif ](y) = f(Piy) , f ∈ F ′ and y ∈ F .

From the inequalities

|Rif(y)| ≤ ‖f‖·‖Piy‖ ≤ ‖f‖·‖Pi‖·‖y‖ ≤ ‖f‖·‖y‖ ,

we see that ‖Rif‖ ≤ ‖f‖ holds for all f ∈ F ′, and so each Ri is a continuous
operator. In particular, fn−→w 0 in F ′ implies Rifn−→w 0 in F ′ for each
i = 1, . . . , k. Also, for each i we have Mixn−→w 0 in E, and hence, taking
into account that T is a weak Dunford–Pettis operator, we infer that

fn(PiTMixn) = Rifn(TMixn) → 0 .

Consequently, it follows from (��) that lim sup |fn(Sxn)| ≤ 5ε. Since ε > 0
is arbitrary, the latter implies lim fn(Sxn) = 0, as desired.

Finally, we close our discussion with the reciprocal Dunford–Pettis prop-
erty. by Theorem 5.82, we know that a Banach space X has the Dunford–
Pettis property if and only if every weakly compact operator from X to any
Banach space is a Dunford–Pettis operator. Following A. Grothendieck [72],
we say that a Banach space X has the reciprocal Dunford–Pettis prop-
erty whenever every Dunford–Pettis operator from X to any Banach space
is weakly compact.

The Banach lattices with the reciprocal Dunford–Pettis property are
precisely the Banach lattices whose duals have order continuous norms. This
is implicitly contained in the paper of C. P. Niculescu [154].

Theorem 5.102. A Banach lattice E has the reciprocal Dunford–Pettis
property if and only if E′ has order continuous norm.

Proof. Assume first that E has the reciprocal Dunford–Pettis property. If
T : E → �1 is a continuous operator, then it follows from Theorem 4.32
that T is a Dunford–Pettis operator, and so by our hypothesis T is weakly
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compact. By part (2) of Theorem 5.29, the Banach lattice E′ has order
continuous norm.

For the converse, assume that E′ has order continuous norm. Let X
be a Banach space, and let T : E → X be a Dunford–Pettis operator. We
claim that T is an M -weakly compact operator. To see this, let {xn} be
a norm bounded disjoint sequence of E. Then xn−→w 0 holds (see Exer-
cise 7 of Section 4.3), and so using that T is Dunford–Pettis we infer that
lim ‖Txn‖ = 0. Hence, T is M -weakly compact, and so by Theorem 5.61
the operator T is weakly compact. So, E has the reciprocal Dunford–Pettis
property.

It is interesting to observe that AM -spaces have the reciprocal Dunford–
Pettis property, while only the finite dimensional AL-spaces have the recip-
rocal Dunford–Pettis property. For some applications to functional analysis
of Dunford–Pettis operators we refer the reader to the book by J. J. Diestel
and J. J. Uhl, Jr. [52].

Exercises

1. If X1, . . . , Xn are Banach spaces with the Dunford–Pettis property, then
show that X1 ⊕ · · · ⊕Xn also has the Dunford–Pettis property. Does the
Lp-sum of a sequence of Banach spaces with the Dunford–Pettis property
have the Dunford–Pettis property?

2. Show that a Banach space X has the Dunford–Pettis property if and only
if every weakly compact subset of X ′ is relatively τ(X ′,X)-compact.

3. For a Banach space X with the Dunford–Pettis property prove the fol-
lowing statements.
(a) If xn−→w 0 holds in X, then {xn} converges uniformly to zero on

every weakly compact subset of X ′.
(b) If x′

n−→w 0 holds in X ′, then {x′
n} converges uniformly to zero on

every weakly compact subset of X.

4. Give an example of a continuous operator T : X → Y between Banach
spaces that is not Dunford–Pettis while its adjoint T ′ is a Dunford–Pettis
operator. [Hint : Consider the identity operator I : c0 → c0. ]

5. Let E be a Banach lattice such that E′ has order continuous norm. If E
has the Dunford–Pettis property, then show that:
(a) xn−→w 0 in E implies |xn|−→w 0.
(b) |x′

n|−→w 0 in E′ implies ‖x′
n‖ → 0.

6. Let E be a Banach lattice such that E and E′ both have order continuous
norms. Then show that every Dunford–Pettis operator from E into an
arbitrary Banach space is compact.

7. If X is Banach space, then for an operator T : c0 → X show that the
following statements are equivalent.
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(a) T is weakly compact.
(b) T is Dunford–Pettis.
(c) T is compact.

8. Let X be a Banach space. Then, show that every continuous operator
from �1 to X and every continuous operator from X to �1 is Dunford–
Pettis.

9. Let T : E → F be a positive Dunford–Pettis operator between two Banach
lattices such that E′ and F both have order continuous norms. Show
that:
(a) T has order continuous norm.
(b) If E is either Dedekind σ-complete or has a quasi-interior point, then

AT ⊆ Ring(T ).

10. Consider the scheme of positive operators

E−→S1 F−→S2 G

between Banach lattices. If S1 is dominated by a Dunford–Pettis operator
and S2 by a weakly compact operator, then show that S2S1 is Dunford–
Pettis.

11. Consider the scheme of operators

E−→S1 F−→S2 X

between Banach spaces such that E and F are Banach lattices. If E′

and F have order continuous norms, S1 is positive, and S2 is Dunford–
Pettis, then show that S2S1 is a compact operator. [Hint : Combine
Theorems 5.79 and 5.28. ]

12. For a continuous operator T : X → Y between Banach spaces establish
the following statements.
(a) If X has the Dunford–Pettis property, then the operator T is weak

Dunford–Pettis.
(b) If Y is reflexive, then T is Dunford–Pettis if and only if T is weak

Dunford–Pettis.

13. (Aliprantis–Burkinshaw [9, 11]) If S, T : E → E are two positive opera-
tors on a Banach lattice such that 0 ≤ S ≤ T holds and T is compact,
then show that:
(a) S3 is a compact operator (although S2 need not be compact).
(b) S2 is Dunford–Pettis and weakly compact (although S need not be).
(c) S is a weak Dunford–Pettis operator.

14. Establish the following properties about weak Dunford–Pettis opera-
tors.
(a) If X−→T Y −→S Z are continuous operators between Banach spaces

and either T or S is weak Dunford–Pettis, then ST is likewise a
weak Dunford–Pettis operator.

(b) If X and Y are two arbitrary Banach spaces, then the set of all
weak Dunford–Pettis operators from X to Y is a norm closed vector
subspace of L(X,Y ).
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15. Following N. J. Kalton and A. Wilansky [84], we say that an operator
T : X → Y between Banach spaces is a Tauberian operator whenever
(T ′′)−1(Y ) = X holds (i.e., if x′′ ∈ X ′′ and T ′′(x′′) ∈ Y imply x′′ ∈ X).

Establish the following properties about Tauberian operators.
(a) A continuous operator T on a Banach space is Tauberian if and only

if Tn is Tauberian for each n.
(b) A Banach space X is reflexive if and only if there exists a Tauberian

weakly compact operator on X.
(c) Let E be a Banach lattice. If T : E → X is a Tauberian Dunford–

Pettis operator from E into a Banach space X, then E is a KB-
space. (Note that E need not be reflexive; for instance, the identity
operator on �1 is both Tauberian and Dunford–Pettis.)

(d) Let S, T : E → F be two positive operators between Banach lattices
such that 0 ≤ S ≤ T holds. If S is Tauberian and T is Dunford–
Pettis, then E is a KB-space.

16. (Aliprantis–Burkinshaw [17]) This exercise generalizes Theorems 5.14,
5.50, and 5.95. Consider the scheme of positive operators

E−→S1 F−→S2 G−→S3 H

between Banach lattices. If S2 is dominated by a compact operator and
(S1)

′ and S3 are both o-weakly compact, then show that S3S2S1 is a com-
pact operator. [Hint : Use Theorem 5.58 and Exercise 11 of Section 5.4. ]
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spaces, Tôhoku Math. J. (2) 1 (1949), 100–108. MR 11, 186

147. M. Nakamura, Notes on Banach space (XI): Banach lattices with positive basis,
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principal band, 33

projection, 35

band preserving operator, 112

band projection, 36

basic sequence in a B-space, 222

basis in a Banach space, 222

bipolar of a set, 147

bipolar theorem, 147

Birkhoff’s inequality, 8

Boolean algebra, 40, 198

Dedekind complete, 40, 198

bounded above set, 12

bounded below set, 12

CT , carrier of operator T , 51

K(X, Y ), ideal of compact operators from
X to Y , 274

co A, convex hull of the set A, 134

371
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CT , components of operator T , 80

Ce, the set of components of e, 40

canonical embedding of E into E∼∼, 61

canonical projection, 99

carrier of operator, 51

Cartesian product of Riesz spaces, 20

circled set, 134

clopen set, 198

closed half-space, 143

closed unit ball of a Banach space, 157

compact operator, 274

compatible topology, 150

complement of a closed subspace, 237

complementably embeddable subspace, 237

complemented closed subspace, 237

completion

Dedekind, 101

universal, 126

component of a vector, 40

component of operator, 80

σ-order continuous, 48

elementary, 80

order continuous, 49

simple, 80

singular, 48

consistent topology, 150

convex circled hull of a set, 134

convex combination of vectors, 134

convex hull of set, 134

convex set, 134

convex, circled, closed hull of a set, 137

copy of a Banach space, 222

countable sup property, 56, 103

D ↓, downward directed set, 16

D ↑, upward directed set, 15

Davis–Figiel–Johnson–Pelczynski space Ψ,
301

decomposition property, 11

Riesz, 16

decreasing net, 8

Dedekind σ-complete Riesz space, 14

Dedekind complete Boolean algebra, 40,
198

Dedekind complete Riesz space, 14

Dedekind completion, 101

difference of sets, 133

direct sum of Riesz spaces, 21

directed upward set, 15

discrete vector, 111

disjoint complement of a set, 7

disjoint sequence, 77, 187

disjoint sets, 7

disjoint vectors, 7

distributive law, 7

downward directed set, 16

dual, 58

σ-order continuous, 59

algebraic, 65, 139

order, 58

order continuous, 59

second, 154

second order, 61

topological, 139

dual system, 144

Riesz, 173

Dunford–Pettis operator, 340

Dunford–Pettis property, 341

for B-spaces, 341

for operators, 340

reciprocal, 354

Dunford–Pettis set, 350

Eδ, Dedekind completion of E, 101

EA, ideal generated by the set A, 33

Ex, ideal generated by x, 33

Eu, universal completion of E, 126

E∼, the order dual of E, 58

E∼
c , the σ-order continuous dual of E, 59

E∼∼, the second order dual of E, 61

E∼
n , the order continuous dual of E, 59

elementary component of operator, 80

embeddable Banach lattice, 222

embeddable Banach space, 222

embedding

lattice, 222

of 
1, 242

of 
∞, 231, 242

of c0, 235

of a B-space, 221

envelopes of set A, 83

equicontinuous set, 148

equivalence class, 99

equivalent basic sequences, 223

equivalent norms, 183

extension of additive mapping, 9

extremally disconnected topological space,
198

extreme point, 40, 144

extreme point of convex set, 27

f -algebra, 122

factorization of an operator, 235, 301

factors of a factorization, 235, 301

finite rank operator, 64, 279

Freudenthal’s spectral theorem, 87

full collection of sets, 149

function

Rademacher, 168

step, 86

upper semicontinuous, 230

function space, 2

functional

Minkowski, 138
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supporting, 138

gauge, 138

generalized orthomorphism, 131

positive, 131

Goldstein’s theorem, 158

Grothendieck space, 218

Hahn–Banach extension theorem, 23

half-space, 143

homomorphism

lattice, 93

Riesz, 93

hull

absolute convex, 134

convex, 134

convex circled, 134

convex, circled, and closed of a set, 137

solid, 171

hull-kernel topology, 206

ideal, 25

σ-, 52, 98

generated by a set, 33

in a Boolean algebra, 206

maximal in a Boolean algebra, 206

null of operator, 51

of order boundedness, 116

order dense, 32

prime in a Boolean algebra, 206

principal, 33

proper in a Boolean algebra, 206

ring, 274, 330

super order dense, 56

uniformly closed, 100

increasing net, 8

inequality

Andô’s, 50

Birkhoff’s, 8

triangle, 8

infinite distributive law, 7

interval, 12

interval preserving operator, 94

inverse annihilator of an ideal, 58

isomorphic Boolean algebras, 198

isomorphism

lattice, 94

Riesz, 94

k-disjoint sequence, 187

Kantorovich–Banach space, 232

KB-space, 232

kernel of linear functional, 139

kernel of operator, 94

Krein–Milman theorem, 144

L-weakly compact operator, 321

L(X), the B-space of all bounded operators
from X to X, 254

L(X, Y ), the continuous operators from X
to Y , 254, 274

Lp-space, 193

Lp-sum of Banach spaces, 183

Lb(E, F ), the order bounded operators
from E to F ., 12

L(E, F ), the vector space of all operators
from E to F , 10

Lc(E, F ), the band of σ-order continuous
operators from E to F , 48

Ln(E, F ), the band of order continuous
operators from E to F , 47

Ls(E, F ), the band of singular operators
from E to F , 48

laterally complete Riesz space, 106, 126

lattice embedding, 222

lattice homomorphism, 93

lattice isomoprhic Riesz spaces, 94

lattice isomorphism, 94

lattice norm, 181

lattice operations

weakly sequentially continuous, 203

lattice operations of a Riesz space, 169

lattice seminorm, 169

σ-order continuous, 185

order continuous, 174, 185

lexicographic ordering, 21

lexicographic plane, 10, 21

linear functional

order bounded, 58

positive, 58

strictly positive, 92, 190

linear topology, 134

locally convex space, 137

locally convex topology, 137

locally convex-solid Riesz space, 169

locally convex-solid topology, 169

M -norm, 193

M -weakly compact operator, 321

τ(X, X′), the Mackey topology on X, 151

Mackey topology, 151

absolute, 173

Mackey–Arens theorem, 150

majorizing subspace, 28

mapping

additive, 9

monotone, 24

sublinear, 23

maximal ideal, 206

Minkowski functional, 138

modulus

of a compact operator, 279

of finite rank operator, 279

of operator, 11, 15, 43
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monotone mapping, 24

multiplication operator, 126, 259

positive, 259

NT , null ideal of operator T , 51

N, the natural numbers, 1

negative part of vector, 4

net

decreasing, 8

increasing, 8

order convergent, 33

norm

M , 193

p-additive, 193

r-, 255

lattice, 181

regular of operator, 255

normed Riesz space, 181

null ideal of operator, 51

Orth(E), the orthomorphisms on E, 117

Orth∞(E), generalized orthomorphisms on
E, 132

o-weakly compact operator, 318

operator, 2

L-weakly compact, 321

M -weakly compact, 321

σ-order continuous, 46

o-weakly compact, 318

adjoint, 152

band preserving, 112

compact, 274

Dunford–Pettis, 340

embedding, 221

factoring through a B-space, 235

finite rank, 64, 279

interval preserving, 94

multiplication, 126, 259

order bounded, 12

order continuous, 46

order weakly compact, 318

positive, 2, 26

preserving disjointness, 113

projection, 36

rank one, 64

regular, 12

semicompact, 331

shift, 91

singular, 48

strictly positive, 56

Tauberian, 357

transpose, 152

weak Dunford–Pettis, 349

weakly compact, 291

weakly continuous, 152

with order continuous norm, 328

with the Dunford–Pettis property, 340

with zero carrier, 53

order adjoint, 66

order bounded linear functional, 58

order bounded operator, 12

with order continuous norm, 328

order bounded set, 12

order closed set, 33

order continuity property, 102

σ-, 102

order continuous component of operator, 49

order continuous dual, 59

order continuous lattice seminorm, 174, 185

order continuous norm

σ-, 204

order continuous operator, 46

order continuous topology, 174

order convergent net, 33

order dense ideal, 32

order dense Riesz subspace, 31

order dual of a Riesz space, 58

order interval, 12

order projection, 36

order unit, 194

weak, 39

order weakly compact operator, 318

ordered vector space, 1

orthomorphism, 115

generalized, 131

generalized positive, 131

Ao, the polar of the set A, 147

p-additive norm, 193

pA, the Minkowski functional of A, 138

perfect Riesz space, 63

Phillip’s lemma, 240

point

extreme, 27, 40, 144

quasi-interior, 266

polar of a set, 147

positive cone of ordered vector space, 2

positive extension of operator, 9

positive linear functional, 58

positive multiplication operator, 259

positive operator, 2, 26

positive part of vector, 4

positive projection, 36

positive vector, 1

prime ideal, 206

principal band, 33

principal ideal, 33

principal projection property, 38

principle of uniform boundedness, 152

projection, 36

band, 36

canonical, 99

order, 36

positive, 36
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projection band, 35

projection property, 36

projection vector, 38

property

σ-order continuity, 102

(u), 228

countable sup, 56, 103

decomposition, 11

order continuity, 102

Riesz decomposition, 16

Schur, 207, 254

Q, the rational numbers, 1

quasi-interior point, 266

quotient Riesz space, 100

quotient topology, 156

R, the real numbers, 1

r-norm, 255

Ring(T ), ring ideal generated by operator
T , 330

Rademacher function, 168, 220

rank one operator, 64

reciprocal Dunford–Pettis property, 354

reflexive Banach lattice, 247

reflexive Banach space, 158

regular norm of operator, 255

regular operator, 12

relatively uniformly convergent sequence,
100

representation of abstract Lp-spaces, 198

retract of a Riesz space, 44

Riesz seminorm, 169

Riesz algebra, 122

Riesz decomposition property, 16

Riesz dual system, 173

Riesz homomorphism, 93

Riesz isomorphic Riesz spaces, 94

Riesz isomorphism, 94

Riesz space, 2

Archimedean, 8

Dedekind σ-complete, 14

Dedekind complete, 14

laterally complete, 106, 126

locally convex-solid, 169

normed, 181

perfect, 63

quotient, 100

super Dedekind complete, 56

uniformly complete, 110

universally complete, 126

with the countable sup property, 56

with the principal projection property, 38

with the projection property, 36

Riesz subspace, 24

order dense, 31

retract, 44

ring ideal generated by an operator, 330

Sol (A), the solid hull of the set A, 171

X′′, second topological dual of X, 154

β(X, X′), strong topology on X, 154

β(X′, X), strong topology on X′, 154

S-topology, 149

σ-ideal, 52, 98

σ-order continuity property, 102

σ-order continuous component of operator,
48

σ-order continuous dual, 59

σ-order continuous lattice seminorm, 185

σ-order continuous norm, 204

σ-order continuous operator, 46

saturated family of seminorms, 138

Schauder basis, 222

Schur property, 207, 254

second dual, 154

second order dual, 61

semicompact operator, 331

seminorm

lattice, 169

Riesz, 169

separable topological space, 159

separation of points

by Lb(E, F ), 58

by E∼, 59

separation of sets, 141

separation theorem, 142

strict, 143

sequence

k-disjoint, 187

basic in a B-space, 222

disjoint, 77, 187

equivalent to a basic sequence, 223

relatively uniformly convergent, 100

uniformly Cauchy, 110

weak Cauchy, 197

set

absorbing, 134

balanced, 134

bounded above, 12

bounded below, 12

circled, 134

clopen, 198

convex, 134

directed upward, 15

downward directed, 16

Dunford–Pettis, 350

equicontinuous, 148

order bounded, 12

order closed, 33

solid, 25, 169

topologically bounded, 135

totally bounded, 135

uniformly closed, 100
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shift operator, 91

simple component of operator, 80

singular component of operator, 48

singular operator, 48

smallest extension, 27

solid hull of a set, 171

solid set, 25, 169

space

Banach, 156

function, 2

Grothendieck, 218

KB, 232

locally convex, 137

Riesz, 2

Stone of Boolean algebra, 198

step function of vector x, 86

stochastic matrix, 111

Stone space of Boolean algebra, 198, 206

strict separation of sets, 141

strict separation theorem, 143

strictly positive linear functional, 92, 190

strictly positive operator, 56

strictly positive vector, 266

strong topology, 154

sublinear mapping, 23

subspace

majorizing, 28

sum of Banach spaces, 183

sum of sets, 32, 133

super Dedekind complete Riesz space, 56

super order dense ideal, 56

supporting functional, 138

T ′, the order adjoint of T , 66

T ∗, the algebraic adjoint of T , 65

Tauberian operator, 357

topological dual, 139

topological space

extremally disconnected, 198

separable, 159

topological vector space, 134

topologically bounded set, 135

topology

S-, 149

absolute weak, 172, 176

compatible, 150

consistent, 150

generated by a family of seminorms, 139

hull-kernel, 206

linear, 134

locally convex, 137

locally convex-solid, 169

Mackey, 151

of pointwise convergence, 145

of uniform convergence, 149

order continuous, 174

quotient, 156

strong, 154
weak, 145, 157
weak∗, 157

totally bounded set, 135

transformer, 31

transpose operator, 152

triangle inequality, 8

U , closed unit ball of X, 157
U ′, closed unit ball of X′, 157
U ′′, closed unit ball of X′′, 157
uniformly Cauchy sequence, 110
uniformly closed ideal, 100
uniformly closed set, 100
uniformly complete Riesz space, 110
unit

order, 194
weak, 39

universal completion, 126
universally complete Riesz space, 126
upper semicontinuous function, 230
upward directed set, 15

vector
discrete, 111
positive, 1
projection, 38
strictly positive, 266

vector lattice, 2
vector space

ordered, 1
topological, 134

vector sublattice, 24

w, the weak topology σ(X, X′), 157
w∗, the weak topology σ(X′, X), 157
weak Dunford–Pettis operator, 349
weak Cauchy sequence, 197
weak order unit, 39
weak topology, 145, 157
weak∗ topology, 157
weakly compact operator, 291
weakly compactly generated B-space, 315
weakly continuous operator, 152
weakly sequentially complete B-space, 232

X′, the topological dual of (X, τ), 139
x-step function, 86

Z, the set of integers, 1




